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Group

A group is a set G together with a binary operation on it. The operation,
denoted by ·, combines any two elements a, b ∈ G, to a · b, which satisfies

▶ Associativity. ∀a, b, c ∈ G, (a · b) · c = a · (b · c).
▶ Identity element. ∃e ∈ G,∀a ∈ G, e · a = a · e = a.

▶ Inverse element. ∀a ∈ G,∃b ∈ G, a · b = b · a = e. Such b can be
denoted as a−1.

Examples: The set of integers with addition. The set of non-zero real
numbers with multiplication.
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Transformation, Equivariance, Invariance

▶ Transformation. A function (usually geometrically meaningful) f
that maps a set X to itself: f : X → X.

▶ Equivariance. A function ϕ : X → Y is said to be equivariant if
S(ϕ(x)) = ϕ(T (x)), where T is a transformation on X, and S is a
transformation on Y .

▶ Invariance. A function ϕ : X → Y is said to be invariant if
ϕ(T (x))) = ϕ(x), where T is a transformation on X.
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Equi- and Invariance

Figure 1: An example of the difference between equivariance and invariance1.
“Equi” means we can find another transformation g′ to make up for the
difference made by g after f . “In” means that the difference made by g does
not have effect on f .

1https://www.youtube.com/watch?v=03MbWVlbefM&t=1393s
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Equivariance

In this paper, three kinds of equivariance are considered on ϕ(x) = y.

▶ Translation equivariance. T (x) = x+ t, ϕ(x+ t) = y + t.

▶ Rotation equivariance. T (x) = Qx, ϕ(Qx) = Qy.

▶ Permutation equivariance. T (x) = P(x), ϕ(P(x)) = P(y).

The Euclidean group E(n) comprises all translations, rotations and
reflections of Euclidean space En.
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Graph Neural Networks

Given a graph G = (V, E), ∀vi ∈ V, eij ∈ E , N (i) = {j | eij ∈ E}, graph
neural networks work as follows

mij = ϕe(h
l
i,h

l
j , aij)

mi =
∑

j∈N (i)

mij

hl+1
i = ϕh(h

l
i,mi).
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Graph Neural Networks (cont.)

We can easily prove that GNNs are permutation equivariant. Suppose
P : V → V,∀eij ∈ E , eP(i) P(j) ∈ E . We have

mP(i) P(j) = ϕe

(
hl
P(i),h

l
P(j), aP(i) P(j)

)
mP(i) =

∑
P(j)∈N (P(i))

mP(i) P(j)

hl+1
P(i) = ϕn

(
hl
P(i),mP(i)

)
.

Therefore, we have hi = hP(i) =⇒ GNN(P(x)) = P(GNN(x)), i.e.
GNN is equivariant under permutation P.
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Equivariant Graph Neural Networks

In addition to the node features and edges before, a new node attribute,
n-dimensional coordinate xi ∈ Rn is introduced as an additional feature
for vi. Equivariant graph neural networks aim to preserve the equivariance
w.r.t. rotations and translations on the set of coordinates.

Figure 2: An exmaple of rotation equivariance on GNN ϕ from this paper.
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Equivariant Graph Neural Networks (cont.)

Each equivariant graph convolutional layer (EGCL) takes the form of
hl+1,xl+1 = EGCL(hl,xl, E).

mij = ϕe

(
hl
i,h

l
j ,
∥∥xl

i − xl
j

∥∥2 , aij)
xl+1
i = xl

i + C
∑
j ̸=i

(
xl
i − xl

j

)
ϕx(mij)

mi =
∑

j∈N (i)

mij

hl+1
i = ϕh

(
hl
i,mi

)
.
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Equivariant Graph Neural Networks (cont.)

The major differences between EGCL and GCL is the computation of mij

and xl+1
i .

▶ For each message mij along the edge between vi and vj , the
squared Euclidean distance ∥xi − xj∥2 between the two nodes are
used.

▶ For each coordinate transformation, ϕx : Rf → R gives the weight
for each relative differences xi − xj . C = 1/(M − 1) averages the
weighted sum.
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Proof of Equivariance

Intuitively, the distance operations in EGCL are invariant to E(n)
transformations, i.e., translation and rotation, and the relative
displacement is equivariant to them.

More formally, we can show that the operation computing mij is

▶ Translation Invariant. T (x) = x+ g.∥∥xl
i + g − (xl

j + g)
∥∥ =

∥∥xl
i − xl

j

∥∥. Therefore, mij is invariant to
translation.

▶ Rotation Invariant. T (x) = Qx.∥∥Qxl
i −Qxl

j

∥∥2 =
(
xl
i − xl

j

)
Q⊤Q

(
xl
i − xl

j

)
=

∥∥xl
i − xl

j

∥∥2.
Therefore, mij is invariant to rotation.
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Proof of Equivariance (cont.)

Additionally, we can show that the operation computing xi is translation
and rotation equivariant (mij is proved to be invariant).

Qxl+1
i + g + C

∑
j ̸=i

(
Qxl

i + g −Qxl
j − g

)
ϕx(mij)

= Qxl
i + g +QC

∑
j ̸=i

(
xl
i − xl

j

)
ϕx(mij)

= Q

xl
i + C

∑
j ̸=i

(
xl
i − xl

j

)
ϕx(mij)

+ g

= Qxl+1
i + g.
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Extend EGNNs for Velocity

Apart from equivariant to the coordinates x, EGNNs can be further
extended to be equivariant to the velocity v and keep track of the
momentum of each node.

hl+1,xl+1,vl+1 = EGCL
(
hl,xl,vl, E

)
vl+1
i = ϕv

(
hl
i

)
vl
i︸ ︷︷ ︸

“acceleration”

+C
∑
j ̸=i

(
xl
i − xl

j

)
ϕx(mij)︸ ︷︷ ︸

coordinate transformation

xl+1
i = xl

i + vl+1
i︸︷︷︸

“displacement”
in unit time

.

The equivariance can be shown w.r.t. x and v similarly while the
invariance w.r.t. mij stays the same.
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Inferring the Edges

In certain graphs, there might be no adjacency matrix, such as a point
cloud. Such graphs are often assumed to be fully connected, thus greatly
increasing the complexity in message aggregation. This can be alleviated
by adding another neural network ϕinf : Rf → [0, 1].

mi =
∑

j∈N (i)

mij =
∑
j ̸=i

eijmij .

eij =

{
1, (vi, vj) ∈ E
0, o.w.

for graphs with E ,

eij = ϕinf (mij) for graphs without E .
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N-body System

In a dynamic system, a function defines the time-dependence of a point
or a set of points in geometrical space. This paper considers the charged
particles N-body experiment in 3D space.

There are five particles carrying either a positive or negative charge. The

input is the initial positions x(0) =
{
x
(0)
1 , · · · ,x(0)

5

}
, initial velocities

v(0) =
{
v
(0)
1 , · · · ,v(0)

5

}
, and charges

c = {c1, · · · , c5} ∈ {−1, 1}5.
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N-body System (cont.)

▶ Implementation. The EGNNs with velocity is used. The norm of
velocity is transformed into h, and the attraction/repulsion between
points is transformed into aij .

▶ Results.

Figure 3: Mean squared errors of the position prediction.
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Graph Autoencoder

This paper tests EGNNs as a graph autoencoder. The autoencoder
represents a graph in adjacency matrix A and node feature matrix X
into Z ∈ R|V|×dh , and then reconstructs A from Z.

The following example shows a special case of a symmetric plain graph.
GNNs on this graph is unable to distinguish different nodes since their
neighbor topology are the same.

Figure 4: A symmetric cycle graph where all nodes have the same topology.
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Graph Autoencoder (cont.)

The symmetric problem in Fig. 4 can be solved by associated each node
with a vector sampled from N (0, σI). However, GNNs need to
generalize to the noise distribution.

By using the sampled noises as x in EGNNs, they become translation and
rotation equivariant, which makes the generalization easier. The authors
provide another explanation that this makes the node representations
from structural to positional, where equivariance helps.

Figure 5: Metrics on graph autoencoder experiments.
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QM9

EGNNs are used to predict molecular properties associated with quantum
chemistry. These properties are invariant to translations and rotations.
Since in this dataset, each molecule is in a stationary state, no position
updates on x are performed.

By simply using the distances, EGNNs can achieve on-par performance
compared to complicated models that consider angles or spherical
harmonics.

Figure 6: Mean absolute errors of twelve prediction targets from QM9 dataset.
EGNNs have similar performance to state-of-the-art DimeNet++ [2].
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Summary

▶ Propose Equivariant Graph Neural Networks (EGNNs) w.r.t. E(n)
transformations, i.e. translation and rotation.

▶ Besides equivariant to positions, EGNNs can be equivariant to
velocities in dynamic systems as well.

▶ Experimentally and theoretically prove that relative distances are
sufficient to define molecular geometry. Using distances alone in
EGNNs achieves competitive performance on related tasks.
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