A Tutorial on Graph Neural Networks

 Graph Convolution，Attention and SAmple and aggreGatE

 Graph Convolution，Attention and SAmple and aggreGatE}

Zhiming Xu

zhimingxu＠smail．nju．edu．cn

Data Exploring \＆Extracting
（a）PolyU（DEEP Lab）

Department of Computing
The Hong Kong Polytechnic University

October 15， 2020

Overview

Introduction

Graph Convolutional Networks

GraphSAGE

Graph Attention Network

Recap

- Graph

A data structure consists of Vertices ${ }^{1}$ and Edges. Denoted by set \mathcal{V} and \mathcal{E}, respectively, a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$.

- Neural Networks

An interconnected group of neurons performing a series of computations.

Input Layer $\in \mathbb{R}^{2}$ Hidden Layer $\in \mathbb{R}^{4}$ Output Layer $\in \mathbb{R}^{1}$
(a) A graph with six vertices and eight edges.
(b) A neural network with one hidden layer.

Figure 2: Example of graph and neural network.
${ }^{1}$ The word " node" and "vertex" are used interchangeably in this tutorial.

Graph Neural Networks (GNNs)

- A type of neural networks operating directly on graphs [1].
- To learn a state representation which contains information of each vertex's neighborhood.
- Notations in this tutorial

Notation	Description	
\mathbb{R}^{m}	m-dimensional Euclidean space	
a, \vec{a}, A	scalar, vector, matrix	
A	adjacent matrix	
X	(node) feature matrix	
D	degree matrix, $D_{i i}=\sum_{j} A_{i j}$	
I_{N}	N-dimensional identity matrix	
\vec{h}, H	learned hidden vector, matrix	
W	neural network weight matrix	
$\sigma, \cdot^{\top}, \cdot \\| \cdot$	non-linear activation, transpose, concatenation	

Table 1: Notations used in this tutorial

The Operation of Convolution

- Convolution

An operation on two functions f and g that produces a third function $f \star g$.

- Convolutional Neural Network (CNN)

Neural networks with the operation of convolution, usually used on images where g is grid and f is called filter.

- Convolution on Graphs

Graphs are not as regular as grids. New methods are needed to generalize convolution to them.

(a) An example of 2D convolution.
(b) Convolution on graphs?

Generalize Convolution to Graphs

- Spectral convolutions on graphs with signal $\vec{x} \in \mathbb{R}^{n}$ in the Fourier domain

$$
\begin{equation*}
g_{\theta} \star \vec{x}=U g_{\theta} U^{\top} \vec{x} \tag{1}
\end{equation*}
$$

where

1. Normalized graph Laplacian $L=I_{N}-D^{-\frac{1}{2}} A D^{-\frac{1}{2}}=U \Lambda U^{\top}$
2. U is the matrix of eigenvectors of normalized graph Laplacian
3. $U^{\top} \vec{x}$ is the Fourier transformation on \vec{x}
4. g_{θ} is the spectral convolutional filter. Can be seen as a function $g_{\theta}(\Lambda)$ on eigenvalues of L

- Equation 1 is computationally expensive and thus needed an efficient approximation.

Generalize Convolution to Graphs (cont.)

Approximations

1. $K^{\text {th }}$ order Chebyshev polynomial

$$
\begin{equation*}
g_{\theta^{\prime}}(\Lambda) \approx \sum_{k=0}^{K} \theta_{k}^{\prime} T_{k}(\tilde{\Lambda}) \tag{2}
\end{equation*}
$$

2. In Equation 1, substitute g_{θ} with Equation 2

$$
\begin{equation*}
g_{\theta^{\prime}} \star \vec{x}=\sum_{k=0}^{K} \theta_{k}^{\prime} T_{k}(\tilde{L}) \vec{x}, \tilde{L}=\frac{2}{\lambda_{\max }} L-I_{N} \tag{3}
\end{equation*}
$$

3. Limit order K to 1 , round $\lambda_{\text {max }}$ to 2 , and reduce parameters

$$
\begin{align*}
g_{\theta^{\prime}} \star \vec{x} & \approx \theta_{0}^{\prime} \vec{x}-\theta_{1}^{\prime} D^{-\frac{1}{2}} A D^{-\frac{1}{2}} \vec{x} \\
& \approx \theta\left(I_{N}+D^{-\frac{1}{2}} A D^{-\frac{1}{2}}\right) \vec{x} \tag{4}
\end{align*}
$$

Generalize Convolution to Graphs (cont.)

Renormalization

- In Equation 4, the $I_{N}+D^{-\frac{1}{2}} A D^{-\frac{1}{2}}$ term's eigenvalues are in $[0,2]$. Stacking layers with this operation might cause vanishing/exploding gradients.
- The renormalization trick is thus introduced to alleviate this problem

$$
I_{N}+D^{-\frac{1}{2}} A D^{-\frac{1}{2}} \longrightarrow \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}}
$$

where $\tilde{A}=A+I_{N}, \tilde{D}$ is \tilde{A} 's degree matrix

Graph Convolutional Network (GCN)

Fast Approximate Graph Convolution

- Generalize to vector signal nodes

$$
\theta\left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}}\right) \vec{x} \longrightarrow \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} X \Theta
$$

- Propagation rule

Multi-layer Graph Convolution Network [2]

$$
H^{(l+1)}=\sigma\left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)}\right), H^{(0)}=X
$$

- Two-layer example (Calculate $\hat{A}=\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}}$ in advance)

$$
Z=f(X, A)=\operatorname{softmax}\left(\hat{A} \operatorname{ReLU}\left(\hat{A} X W^{(0)}\right) W^{(1)}\right)
$$

Graph Representation Learning

Goal

- Distill high-dimensional information and reduce it to a dense vector.
- Low-dimensional vector embeddings of nodes in large graphs are very useful in various downstream tasks.
Problem with Using GCNs
- Whole graph is large and computationally prohibitive. Mini-batch is slow to train and hard to converge.
- Full graph is needed, training in a transductive way.
- Difficult to use on real-world dynamic graphs.

Graph SAmple and aggreGatE (GraphSAGE)

Sample neighborhood and aggregate the information.

1. Sample neighborhood

2. Aggregate feature information
from neighbors

3. Predict graph context and label using aggregated information

Figure 4: Illustration of GraphSAGE forward propagation. ${ }^{2}$

[^0]
GraphSAGE Embedding Generation

GraphSAGE Forward Propagation [3]

Result: Node i 's representation z_{i} after K iterations $\vec{h}_{i}^{0} \leftarrow \vec{h}_{i}, \forall i \in \mathcal{V}$;
for $k=1 \ldots K$ do
for $i \in \mathcal{V}$ do
$\vec{h}_{N_{i}}^{k} \leftarrow$ AGGREGATE $_{k}\left(\left\{\vec{h}_{j}, \forall j \in \mathcal{N}_{i}\right\}\right) ;$ $\vec{h}_{i}^{k} \leftarrow \sigma\left(W^{k} \cdot\left[\vec{h}_{i}^{k-1} \| \vec{h}_{\mathcal{N}_{i}}^{k}\right]\right) ;$
end
$\vec{h}_{i}^{k} \leftarrow \frac{\vec{h}_{i}^{k}}{\left\|\vec{h}_{i}^{k}\right\|_{2}}, \forall i \in \mathcal{V} ;$
end
$\vec{z}_{i} \leftarrow \vec{h}_{i}^{K}, \forall i \in \mathcal{V}$

Parameter Learning of GraphSAGE

Graph-Based Loss Function [3]

$$
L_{G}\left(\vec{h}_{i}\right)=-\log \left(\sigma\left(\vec{h}_{i}^{\top} \vec{h}_{j}\right)\right)-Q \cdot\left(\mathbb{E}_{v_{i} \sim P_{n(i)}} \log \left(\sigma\left(-\vec{h}_{i}^{\top} \vec{h}_{v_{i}}\right)\right)\right)
$$

- j is a node that co-occurs near i on fixed-length random walk.
- σ is the sigmoid function, $\sigma(x)=\frac{1}{1+\exp (-x)}$
- P_{n} is a negative sampling distribution, Q is $\#$ of negative samples.

Based on loss L_{G}, the parameters in Algorithm 1 are optimized with stochastic gradient descend.

Choice of Aggregator Functions

- Mean Aggregator

$$
\vec{h}_{i}^{k} \leftarrow \sigma\left(W \cdot \operatorname{MEAN}\left(\left\{\vec{h}_{i}^{k-1}\right\} \cup\left\{\vec{h}_{j}^{k-1}, \forall j \in \mathcal{N}_{i}\right\}\right)\right)
$$

- LSTM Aggregator

$$
\vec{h}_{i}^{k} \leftarrow \operatorname{LSTM}\left(\pi\left\{\vec{h}_{j}, \forall j \in \mathcal{N}_{i}\right\}\right)
$$

- Pooling Aggregator

$$
\vec{h}_{i}^{k} \leftarrow \max \left(\left\{\sigma\left(W_{\text {pool }} \vec{h}_{j}^{k}+\vec{b}\right), \forall j \in \mathcal{N}_{i}\right\}\right)
$$

Attention Mechanism

- Attention mechanism achieves great successes in sequence-based tasks.
- They can be used to deal with variable size inputs, and focus on the most relevant parts by assigning different weights.
- Attention used on a single sequence is called self-attention.

Figure 5: Attention visualization, generated by bertviz

Graph Attentional Layer

(Self-)Attention Mechanism on Graphs

- Input: Set of node features $H=\left\{\vec{h}_{1}, \vec{h}_{2}, \cdots, \vec{h}_{N}\right\}, h_{i} \in \mathbb{R}^{d} . N$ is the number of nodes and d is the feature dimension.
- Output: A new set of node features

$$
H^{\prime}=\left\{\vec{h}_{1}^{\prime}, \vec{h}_{2}^{\prime}, \cdots, \vec{h}_{N}^{\prime}\right\}, h_{i}^{\prime} \in \mathbb{R}^{d}
$$

- Attention $a: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ with weight matrix W

$$
e_{i j}=a\left(W \vec{h}_{i}, W \vec{h}_{j}\right)
$$

$e_{i j}$ is called attention coefficients.

Graph Attentional Layer (cont.)

Details of Attention a

- Masked: Calculate $e_{i j}$ for $j \in \mathcal{N}_{i}$, i.e., i 's neighborhood.
- Normalized: Use softmax to normalize across all j 's

$$
\alpha_{i j}=\operatorname{softmax}_{j}\left(e_{i j}\right)=\frac{\exp \left(e_{i j}\right)}{\sum_{k \in N_{i}} \exp \left(e_{i k}\right)}
$$

- Attention a 's implementation

$$
\alpha_{i j}=\frac{\exp \left(\operatorname{LeakyReLU}\left(\vec{a}^{\top}\left[W \vec{h}_{i} \| W \vec{h}_{j}\right]\right)\right)}{\sum_{k \in N_{i}} \exp \left(\operatorname{LeakyReLU}\left(\vec{a}^{\top}\left[W \vec{h}_{i} \| W \vec{h}_{j}\right]\right)\right)}
$$

LeakyReLU $=\left\{\begin{array}{cc}\alpha \cdot x, & x<0 \\ x, & x>0\end{array}\right.$

Graph Attentional Layer (cont.)

Attention Acts on Hidden Representations

- Linear combination and activation

$$
\vec{h}_{i}^{\prime}=\sigma\left(\sum_{j \in \mathcal{N}_{i}} \alpha_{i j} W \vec{h}_{j}\right)
$$

- Multi-head attention
- Concatenation

$$
\vec{h}_{i}^{\prime}=\|_{k=1}^{K} \sigma\left(\sum_{j \in \mathcal{N}_{i}} \alpha_{i j} W^{k} \vec{h}_{j}\right)
$$

- Average

$$
\vec{h}_{i}^{\prime}=\sigma\left(\frac{1}{K} \sum_{k=1}^{K} \sum_{j \in \mathcal{N}_{i}} \alpha_{i j} W^{k} \vec{h}_{j}\right)
$$

Graph Attention Network (GAT)

Graph Attention Network Propagation Rule and IIlustration [4]

$$
\vec{h}_{i}^{\prime}=\sigma\left(\sum_{j \in N_{i}} \frac{\exp \left(\operatorname{LeakyReLU}\left(\vec{a}^{\top}\left[W \vec{h}_{i}| | W \vec{h}_{j}\right]\right)\right)}{\sum_{k \in N_{i}} \exp \left(\operatorname{LeakyReLU}\left(\vec{a}^{\top}\left[W \vec{h}_{i} \| W \vec{h}_{j}\right]\right)\right)} W \vec{h}_{j}\right)
$$

Figure 6: Left: Attention mechanism a. Right: Multi-head attention on a graph.

Thank You for Your Attention

Q \& A

References

[1] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, "The graph neural network model," IEEE Trans. Neural Networks, vol. 20, no. 1, pp. 61-80, 2009. Doi: 10.1109/TNN .2008.2005605. [Online]. Available: https://doi.org/10.1109/TNN. 2008.2005605.
[2] T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks," in 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings, OpenReview.net, 2017.
[Online]. Available:
https://openreview.net/forum?id=SJU4ayYgl.

References (cont.)

[3] W. L. Hamilton, Z. Ying, and J. Leskovec, "Inductive representation learning on large graphs," in Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, Eds., 2017, pp. 1024-1034. [Online]. Available:
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.
[4] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, "Graph attention networks," in 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30-May 3, 2018, Conference Track Proceedings, OpenReview.net, 2018. [Online]. Available:
https://openreview.net/forum?id=rJXMpikCZ.

[^0]: ${ }^{2}$ http://snap.stanford.edu/graphsage/

