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Recap

I Graph
A data structure consists of Vertices1 and Edges. Denoted by set V
and E , respectively, a graph G = (V, E).

I Neural Networks
An interconnected group of neurons performing a series of
computations.

(a) A graph with six vertices and
eight edges.

(b) A neural network with one
hidden layer.

Figure 2: Example of graph and neural network.

1The word ”node” and ”vertex” are used interchangeably in this tutorial.
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Graph Neural Networks (GNNs)

I A type of neural networks operating directly on graphs [1].

I To learn a state representation which contains information of each
vertex’s neighborhood.

I Notations in this tutorial

Notation Description
Rm m-dimensional Euclidean space
a,~a,A scalar, vector, matrix
A adjacent matrix
X (node) feature matrix
D degree matrix, Dii =

∑
j Aij

IN N -dimensional identity matrix
~h,H learned hidden vector, matrix
W neural network weight matrix

σ, ·>, ·‖· non-linear activation, transpose, concatenation

Table 1: Notations used in this tutorial
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The Operation of Convolution

I Convolution
An operation on two functions f and g that produces a third
function f ? g.

I Convolutional Neural Network (CNN)
Neural networks with the operation of convolution, usually used on
images where g is grid and f is called filter.

I Convolution on Graphs
Graphs are not as regular as grids. New methods are needed to
generalize convolution to them.

(a) An example of 2D convolution. (b) Convolution on graphs?
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Generalize Convolution to Graphs

I Spectral convolutions on graphs with signal ~x ∈ Rn in the Fourier
domain

gθ ? ~x = UgθU
>~x (1)

where

1. Normalized graph Laplacian L = IN −D−
1
2AD−

1
2 = UΛU>

2. U is the matrix of eigenvectors of normalized graph Laplacian

3. U>~x is the Fourier transformation on ~x

4. gθ is the spectral convolutional filter. Can be seen as a function
gθ(Λ) on eigenvalues of L

I Equation 1 is computationally expensive and thus needed an efficient
approximation.
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Generalize Convolution to Graphs (cont.)

Approximations

1. Kth order Chebyshev polynomial

gθ′(Λ) ≈
K∑
k=0

θ′kTk(Λ̃) (2)

2. In Equation 1, substitute gθ with Equation 2

gθ′ ? ~x =

K∑
k=0

θ′kTk(L̃)~x, L̃ =
2

λmax
L− IN (3)

3. Limit order K to 1, round λmax to 2, and reduce parameters

gθ′ ? ~x ≈ θ′0~x− θ′1D−
1
2AD−

1
2 ~x

≈ θ
(
IN +D−

1
2AD−

1
2

)
~x

(4)
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Generalize Convolution to Graphs (cont.)

Renormalization

I In Equation 4, the IN +D−
1
2AD−

1
2 term’s eigenvalues are in [0, 2].

Stacking layers with this operation might cause vanishing/exploding
gradients.

I The renormalization trick is thus introduced to alleviate this problem

IN +D−
1
2AD−

1
2 −→ D̃−

1
2 ÃD̃−

1
2

where Ã = A+ IN , D̃ is Ã’s degree matrix
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Graph Convolutional Network (GCN)

Fast Approximate Graph Convolution

I Generalize to vector signal nodes

θ
(
D̃−

1
2 ÃD̃−

1
2

)
~x −→ D̃−

1
2 ÃD̃−

1
2XΘ

I Propagation rule

Multi-layer Graph Convolution Network [2]

H(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2H(l)W (l)

)
, H(0) = X

I Two-layer example (Calculate Â = D̃−
1
2 ÃD̃−

1
2 in advance)

Z = f(X,A) = softmax
(
Â ReLU

(
ÂXW (0)

)
W (1)

)
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Graph Representation Learning

Goal

I Distill high-dimensional information and reduce it to a dense vector.

I Low-dimensional vector embeddings of nodes in large graphs are
very useful in various downstream tasks.

Problem with Using GCNs

I Whole graph is large and computationally prohibitive. Mini-batch is
slow to train and hard to converge.

I Full graph is needed, training in a transductive way.

I Difficult to use on real-world dynamic graphs.
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Graph SAmple and aggreGatE (GraphSAGE)

Sample neighborhood and aggregate the information.

Figure 4: Illustration of GraphSAGE forward propagation.2

2http://snap.stanford.edu/graphsage/
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GraphSAGE Embedding Generation

GraphSAGE Forward Propagation [3]

Result: Node i’s representation zi after K iterations
~h0i ← ~hi,∀i ∈ V;
for k = 1 . . .K do

for i ∈ V do
~hkNi
← AGGREGATEk

(
{~hj ,∀j ∈ Ni}

)
;

~hki ← σ
(
W k ·

[
~hk−1i ‖~hkNi

])
;

end

~hki ←
~hk

i

‖~hk
i ‖2

,∀i ∈ V;

end

~zi ← ~hKi ,∀i ∈ V
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Parameter Learning of GraphSAGE

Graph-Based Loss Function [3]

LG(~hi) = − log
(
σ
(
~h>i
~hj

))
−Q ·

(
Evi∼Pn(i)

log
(
σ
(
−~h>i ~hvi

)))
I j is a node that co-occurs near i on fixed-length random walk.

I σ is the sigmoid function, σ(x) =
1

1 + exp(−x)
I Pn is a negative sampling distribution, Q is # of negative samples.

Based on loss LG, the parameters in Algorithm 1 are optimized with
stochastic gradient descend.
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Choice of Aggregator Functions

I Mean Aggregator

~hki ← σ
(
W ·MEAN

({
~hk−1i

}
∪
{
~hk−1j ,∀j ∈ Ni

}))
I LSTM Aggregator

~hki ← LSTM
(
π
{
~hj ,∀j ∈ Ni

})
I Pooling Aggregator

~hki ← max
({
σ
(
Wpool

~hkj +~b
)
,∀j ∈ Ni

})
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Attention Mechanism

I Attention mechanism achieves great successes in sequence-based
tasks.

I They can be used to deal with variable size inputs, and focus on the
most relevant parts by assigning different weights.

I Attention used on a single sequence is called self-attention.

(a) Self-attention (b) Sentence pair attention

Figure 5: Attention visualization, generated by bertviz
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Graph Attentional Layer

(Self-)Attention Mechanism on Graphs

I Input: Set of node features H =
{
~h1,~h2, · · · ,~hN

}
, hi ∈ Rd. N is

the number of nodes and d is the feature dimension.

I Output: A new set of node features

H ′ =
{
~h′1,

~h′2, · · · ,~h′N
}
, h′i ∈ Rd.

I Attention a : Rd × Rd → R with weight matrix W

eij = a(W~hi,W~hj)

eij is called attention coefficients.
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Graph Attentional Layer (cont.)

Details of Attention a

I Masked: Calculate eij for j ∈ Ni, i.e., i’s neighborhood.

I Normalized: Use softmax to normalize across all j’s

αij = softmaxj(eij) =
exp(eij)∑

k∈Ni
exp(eik)

I Attention a’s implementation

αij =
exp

(
LeakyReLU(~a>[W~hi||W~hj ])

)
∑
k∈Ni

exp
(

LeakyReLU(~a>[W~hi||W~hj ])
)

LeakyReLU =

{
α · x, x < 0
x, x > 0
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Graph Attentional Layer (cont.)

Attention Acts on Hidden Representations

I Linear combination and activation

~h′i = σ

∑
j∈Ni

αijW~hj


I Multi-head attention

• Concatenation

~h′i =
∥∥∥K
k=1

σ

∑
j∈Ni

αijW
k~hj


• Average

~h′i = σ

 1

K

K∑
k=1

∑
j∈Ni

αijW
k~hj
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Graph Attention Network (GAT)

Graph Attention Network Propagation Rule and Illustration [4]

~h′i = σ

∑
j∈Ni

exp
(

LeakyReLU
(
~a>
[
W~hi||W~hj

]))
∑
k∈Ni

exp
(

LeakyReLU
(
~a>
[
W~hi||W~hj

]))W~hj



Figure 6: Left: Attention mechanism a. Right: Multi-head attention on a
graph.
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Thank You for Your Attention

Q & A
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