Graph Few-shot Learning via Knowledge Transfer Huaxiu Yao, Chuxu Zhang, Ying Wei, Meng Jiang, Suhang Wang, Junzhou Huang, Nitesh V. Chawla, Zhenhui Li [1]

Zhiming Xu

zhiming.xu@polyu.edu.hk

Department of Computing The Hong Kong Polytechnic University

January 21, 2021

Problem Definition

Methodology

Overview

Prototype GNN

Hierarchical Graph Representation Gate

Auxiliary Graph Reconstruction

Experiment Results

Conclusion

- E - N

・ロト ・日下・ ・ ヨト・

Few-shot Learning

- One way of meta learning. Contrary to traditional supervised learning practices, only a small number of labeled data (a *few shots*) is available for training.
- Given a support set where there are some samples in each class, and a query set where there are queries of unknown classes, train a model to match each query with the class it belongs to.

(a) Traditional supervised learning.

(b) Few-shot learning.

イロト イヨト イヨト

Figure 1: Comparison between supervised and few-shot learning.

- Store knowledge gained when solving one problem and apply it to another related problem.
- Example: Train a classification model on animals, and the knowledge learned can help classify plants.

Input

- A sequence of graphs $\{\mathcal{G}_1, \mathcal{G}_2, \cdots, \mathcal{G}_{N_t}\}$ from a distribution \mathcal{E} .
- ▶ Support set $S_i = \{(\mathbf{x}_{i,j}^{s_i}, y_{i,j}^{s_i})\}_{j=1}^{n^{s_i}}$ of n^{s_i} labeled nodes.

▶ Query set
$$Q_i = \{(\mathbf{x}_{i,j}^{q_i}, y_{i,j}^{q_i})\}_{j=1}^{n^{q_i}}$$
 of n^{q_i} unknown nodes.

Goal

► For each query in Q, predict its corresponding label.

Label Prediction

With some similarity metric d, associate query node j's embedding with one in support set S, then predict the label according to that of the support node.

$$label(q_{i,j}) = \arg_{y_{i,j}} \min d\left(f_{\theta}(\mathbf{A}, x_{i,j}^{q_{i,j}}), (f_{\theta}(\mathbf{A}, x_{i,j}^{s_i}), y_{i,j}^{s_i})\right)$$
(1)

► Alternatively, associate j with the closest geometric center (*prototype*) of nodes' representations in some class k: $\mathbf{c}_{i}^{k} = \sum_{x_{i,j}^{s_{i}} \in S_{i}^{k}} f_{\theta}(\mathbf{A}, x_{i,j}^{s_{i}}) / |\mathcal{S}_{i}^{k}|.$

<ロト < 同ト < ヨト < ヨ)

Loss

▶ For each graph G_i , the loss is defined as

$$\mathcal{L}_{i}^{k} = -\sum_{\left(\mathbf{x}_{i,j}^{q_{i}}, y_{i,j}^{q_{i}} \in \mathcal{Q}_{i}^{k}\right)} \log \frac{\exp\left(-d\left(f_{\theta}(\mathbf{A}, \mathbf{x}_{i,j}^{q_{i}}), \mathbf{c}_{i}^{k}\right)\right)}{\sum_{k'} \exp\left(-d\left(f_{\theta}(\mathbf{A}, \mathbf{x}_{i,j}^{q_{i}}), \mathbf{c}_{i}^{k'}\right)\right)}$$
(2)

 \mathcal{Q}_i^k is the support set of class k in graph \mathcal{G}_i .

▶ The loss of all nodes in graph G_i is the summation over all classes, i.e., $\mathcal{L}_i = \sum_k \mathcal{L}_i^k$.

Objective

► Learn a GNN representation f_{θ} , such that \mathcal{L}_i is minimized for every observed $\mathcal{G}_i, \mathcal{G}_i \sim \mathcal{E}$.

$$\min_{\theta} \sum_{i} \mathcal{L}_{i} \tag{3}$$

• • • • • • • • • • •

- Different nodes in then same graph are not identically and independently distributed as different images.
- Knowledge transfer formulated as parameter initialization and metric space is not sufficient to capture complex, multi-level relations and structures in graphs.

Problem Definition

Methodology

Overview

Prototype GNN

Hierarchical Graph Representation Gate

Auxiliary Graph Reconstruction

Experiment Results

Conclusion

イロト イヨト イヨト イヨト

Authors propose Graph Few-shot Learning (GFL) algorithm, aiming to adapt graph-structure knowledge gained from observed graphs to newly discovered ones by exploiting both node and graph level relations and structures.

Specifically, it contains the following components:

- Prototype GNN (PGNN): Learn each class k's prototype representation with support set S^k_i, ∀k.
- Hierarchical Graph Representation Gate: Learn graph-level representation and ensure knowledge transfer among similar graphs.
- Auxiliary Graph Reconstruction: Enhance training stability and representation quality.

They corresponds to Part (a), (b), and (c) in Fig. 2, respectively.

イロト イヨト イヨト

Figure 2: The proposed Graph Few-shot Learning (GFL) model.

Data Exploration & Extracting Lab @ PolyU

Graph Few-shot Learning

January 21, 2021 11 / 25

・ロト ・日下・ ・ ヨト・

Problem Definition

Methodology

Overview

Prototype GNN

Hierarchical Graph Representation Gate

Auxiliary Graph Reconstruction

Experiment Results

Conclusion

イロト イヨト イヨト イヨト

Model the relational structure among nodes in support set. The relational structure \mathcal{R}_i^k in \mathcal{G}_i is constructed with some similarity metrics. Hence the support nodes' interactions with such relation is $\mathrm{PGNN}_{\phi}\left(\mathcal{R}_i^k, f_{\theta}(\mathcal{S}_i^k)\right)$. The prototype of each class k in \mathcal{G}_i is

$$\mathbf{c}_{i}^{k} = \operatorname{Pool}_{j=1}^{n^{s_{i}^{k}}} \left(\operatorname{PGNN}_{\phi} \left(\mathcal{R}_{i}^{k}, f_{\theta}(\mathcal{S}_{i}^{k}) \right) [j] \right)$$
(4)

PGNN is parameterized by ϕ . Pool denotes some kind of pooling operator, and $n^{s_i^k}$ is the number of class k's nodes in S_k^i .

A D > A B > A B > A

Problem Definition

Methodology

Overview

Prototype GNN

Hierarchical Graph Representation Gate

Auxiliary Graph Reconstruction

Experiment Results

Conclusion

イロト イヨト イヨト イヨト

A simple PGNN may fail to capture complex graph structures, authors introduce *hierarchical graph representation gate* to extract graph-specific information and incorporate it with ϕ . For each level, there are two stages:

- Node Assignment: Every low-level node is assigned to a high-level community with an assignment GNN (AGNN).
- Representation Fusion: The adjacency matrix is transformed by assignment matrix while the feature matrix is calculated by applying assignment matrix on a fusion GNN (FGNN). Hence next-level feature representation are aggregated from the transformed node representations.

- ▶ K^r : # of nodes. $\mathbf{A}_i^r, \mathbf{X}_i^r$: adjacency/feature matrix. r: level no.
- Assignment from node k^r in level r to node k^{r+1} in level r+1, i.e., $p_i^{k^r \to k^{r+1}}$ is defined as

$$p_i^{k^r \to k^{r+1}} = \frac{\exp\left(\operatorname{AGNN}\left(\mathbf{A}_i^r, \mathbf{X}_i^r\right)\left[k^r, k^{r+1}\right]\right)}{\sum_{\bar{k}_i^r = 1}^{K^r + 1}\exp\left(\operatorname{AGNN}\left(\mathbf{A}_i^r, \mathbf{X}_i^r\right)\left[k^r, \bar{k}^{r+1}\right]\right)}$$
(5)

AGNN $(\mathbf{A}_i^r, \mathbf{X}_i^r) [k^r, k^{r+1}] \in \mathbb{R}^1$ denotes the assignment value from node k^r in level r to node k^{r+1} in level r+1. $\mathbf{P}_i^{r \to r+1} \in \mathbb{R}^{K^r \times K^{r+1}}$ is the whole assignment matrix.

After calculating assignment matrix $\mathbf{P}_i^{r \to r+1}$. The transformed adjacency and feature matrix are calculated as follows

$$\mathbf{A}_{i}^{r+1} = \left(\mathbf{P}_{i}^{r \to r+1}\right)^{\top} \mathbf{A}_{i}^{r} \mathbf{P}_{i}^{r \to r+1}$$
$$\mathbf{X}_{i}^{r+1} = \left(\mathbf{P}_{i}^{r \to r+1}\right)^{\top} \operatorname{FGNN}\left(\mathbf{A}_{i}^{r}, \mathbf{X}_{i}^{r}\right)$$
(6)

Hence the feature representation \mathbf{h}_i^{r+1} of level r+1 is aggregated by

$$\mathbf{h}_{i}^{r+1} = \operatorname{Pool}_{k^{r+1}}^{K^{r+1}} \left(\left(\mathbf{P}_{i}^{r \to r+1} \right)^{\top} \operatorname{FGNN} \left(\mathbf{A}_{i}^{r}, \mathbf{X}_{i}^{r} \right) [k^{r+1}] \right)$$
(7)

• • • • • • • • • • •

After calculating each level's representation, a set of \mathbf{h}_i 's, i.e., $\mathbf{H}_i = \left\{ \mathbf{h}_i^1, \cdots, \mathbf{h}_i^R \right\}$ encodes \mathcal{G}_i 's structure from different levels. To obtain the final graph representation \mathbf{h}_i , another aggregator is used

$$\operatorname{AGG}_{t}(\mathbf{H}_{i}) = \begin{cases} \frac{1}{R} \sum_{r}^{R} \mathbf{h}_{i}^{r}, & t = \text{mean} \\ \frac{1}{R} \sum_{r}^{R} \beta_{i}^{r} \mathbf{h}_{i}^{r} = \frac{1}{R} \sum_{r}^{R} \frac{\mathbf{q}_{i}^{\top} \mathbf{h}_{i}^{r}}{\sum_{r'=1}^{R}} \mathbf{q}_{i}^{\top} \mathbf{h}_{i}^{r'} \mathbf{h}_{i}^{r}, & t = \text{att} \end{cases}$$

$$\tag{8}$$

The final representation \mathbf{h}_i is expected to be graph-specific. Additionally, a gate function $\mathbf{g}_i = \mathcal{T}(\mathbf{h}_i)$ is introduced to tailor graph structure specific information. Thus the global transferable knowledge is gated by \mathbf{g}_i

$$\phi_i = \mathbf{g}_i \odot \phi$$

$$\mathbf{g}_i = \mathcal{T}(\mathbf{h}_i) = \sigma(\mathbf{W}_g \mathbf{h}_i + \mathbf{b}_g)$$
(9)

Problem Definition

Methodology

Overview

Prototype GNN

Hierarchical Graph Representation Gate

Auxiliary Graph Reconstruction

Experiment Results

Conclusion

イロト イヨト イヨト イヨト

Matching loss is usually insufficient for training informative node representation. $f_\theta(\cdot)$ is refined as an autoencoder and an additional reconstruction loss is applied

$$\mathcal{L}_{r}(\mathbf{A}_{i}, \mathbf{X}_{i}) = \left\| \mathbf{A}_{i} - \text{GNN}_{\text{dec}}(\mathbf{Z}_{i}) \text{GNN}_{\text{dec}}^{\top}(\mathbf{Z}_{i}) \right\|_{F}^{2}$$
(10)

 $\mathbf{Z}_i = \text{GNN}(\mathbf{A}_i, \mathbf{X}_i)$ is the representation of \mathcal{G}_i . $\|\cdot\|_F$ is the Frobenius norm.

Combining \mathcal{L}_r with PGNN's few-shot loss, the training objective of proposed GFL is

$$\min_{\Theta} \sum_{i=1}^{N_t} \mathcal{L}_i + \eta \mathcal{L}_r(\mathbf{A}_i, \mathbf{X}_i)$$
(11)

<ロト < 同ト < ヨト < ヨ)

Model	Collaboration	Reddit	Citation	Pubmed
LP (Zhu and Ghahramani 2002) Planetoid (Yang, Cohen, and Salakhudinov 2016)	$\begin{array}{c} 61.09 \pm 1.36\% \\ 62.95 \pm 1.23\% \end{array}$	$ \begin{vmatrix} 23.40 \pm 1.63\% \\ 50.97 \pm 3.81\% \end{vmatrix} $	$ \begin{array}{c} 67.00 \pm 4.50\% \\ 61.94 \pm 2.14\% \end{array} $	$\begin{array}{c} 48.55 \pm 6.01\% \\ 51.43 \pm 3.98\% \end{array}$
Deepwalk (Perozzi, Al-Rfou, and Skiena 2014) node2vec (Grover and Leskovec 2016) Non-transfer-GCN (Kipf and Welling 2017)	$\begin{array}{c} 51.74 \pm 1.59\% \\ 59.77 \pm 1.67\% \\ 63.16 \pm 1.47\% \end{array}$	$\begin{array}{ } 34.81 \pm 2.81\% \\ 43.57 \pm 2.23\% \\ 46.21 \pm 1.43\% \end{array}$	$\begin{array}{c} 56.56 \pm 5.25\% \\ 54.66 \pm 5.16\% \\ 63.95 \pm 5.93\% \end{array}$	$\begin{array}{c} 44.33 \pm 4.88\% \\ 41.89 \pm 4.83\% \\ 54.87 \pm 3.60\% \end{array}$
All-Graph-Finetune (AGF) K-NN Matchingnet (Vinyals et al. 2016) MAML (Finn, Abbeel, and Levine 2017) Protonet (Snell, Swersky, and Zemel 2017)	$\begin{array}{c} 76.09 \pm 0.56\% \\ 67.53 \pm 1.33\% \\ 80.87 \pm 0.76\% \\ 79.37 \pm 0.41\% \\ 80.49 \pm 0.55\% \end{array}$	$ \begin{array}{l} 54.13 \pm 0.57\% \\ 56.06 \pm 1.36\% \\ 56.21 \pm 1.87\% \\ 59.39 \pm 0.28\% \\ 60.46 \pm 0.67\% \end{array} $	$ \begin{array}{c} 88.93 \pm 0.72\% \\ 78.18 \pm 1.70\% \\ 94.38 \pm 0.45\% \\ 95.71 \pm 0.23\% \\ 95.12 \pm 0.17\% \end{array} $	$\begin{array}{c} 83.06 \pm 0.72\% \\ 74.33 \pm 0.52\% \\ 85.65 \pm 0.21\% \\ 88.44 \pm 0.46\% \\ 87.90 \pm 0.54\% \end{array}$
GFL-mean (Ours) GFL-att (Ours)	$\begin{array}{c} 83.51 \pm 0.38\% \\ 83.79 \pm 0.39\% \end{array}$	$ \begin{array}{c} 62.66 \pm 0.57\% \\ 63.14 \pm 0.51\% \end{array} $	$\begin{array}{ } 96.51 \pm \mathbf{0.31\%} \\ 95.85 \pm 0.26\% \end{array}$	$\begin{array}{c} {\bf 89.37 \pm 0.41\%}\\ {\bf 88.96 \pm 0.43\%}\end{array}$

Figure 3: Accuracy on various graph datasets

• • • • • • • • • • • •

Ablation Study and Latent Space Analysis

Ablation Model	Collaboration		Reddit	Citation	Pubmed
(M1a): use the mean pooling prototype (i.e., protonet)	$80.49 \pm 0.55\%$		$60.46 \pm 0.67\%$	$95.12 \pm 0.17\%$	87.90 ± 0.54%
(M2a): remove the hierarchical representation gate (M2b): use flat representation rather than hierarchical	$\begin{vmatrix} 82.63 \pm 0.45\% \\ 83.45 \pm 0.41\% \end{vmatrix}$		$\begin{array}{c} 61.99 \pm 0.27\% \\ 62.55 \pm 0.65\% \end{array}$	$\begin{array}{c} 95.33 \pm 0.35\% \\ 95.76 \pm 0.37\% \end{array}$	$ \begin{vmatrix} 88.15 \pm 0.55\% \\ 89.08 \pm 0.47\% \end{vmatrix} $
(M3): remove the graph reconstruction loss	$ 82.98 \pm 0.37\%$		$62.58 \pm 0.47\%$	$95.63 \pm 0.27\%$	$ ~~89.11 \pm 0.43\%$
GFL (Ours)	$ 83.79 \pm 0.39\%$	6	$63.14 \pm \mathbf{0.51\%}$	$\mid 96.51 \pm 0.31\%$	$\mid~89.37\pm0.41\%$

Figure 4: Upper table: Ablation study of GFL. Lower figures: Node embeddings in latent space

Data Exploration & Extracting Lab @ PolyU

January 21, 2021 22 / 25

・ロト ・日 ・ ・ ヨト ・ ヨ

- Propose GFL, which adapts metric-based few-shot learning to graph representation learning.
- Integrate node and graph-level knowledge to learn a transferable metric space.
- Improve node classification performances on new graph with knowledge from auxiliary graphs.

Q & A

Data Exploration & Extracting Lab @ PolyU

January 21, 2021 24 / 25

・ロト ・日下・ ・ ヨト・

 H. Yao, C. Zhang, Y. Wei, M. Jiang, S. Wang, J. Huang, N. V. Chawla, and Z. Li, "Graph few-shot learning via knowledge transfer," in *The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications* of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, AAAI Press, 2020, pp. 6656–6663. [Online]. Available:

https://aaai.org/ojs/index.php/AAAI/article/view/6142.

<ロト < 同ト < ヨト < ヨ)