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Few-shot Learning

I One way of meta learning. Contrary to traditional supervised
learning practices, only a small number of labeled data (a few shots)
is available for training.

I Given a support set where there are some samples in each class, and
a query set where there are queries of unknown classes, train a
model to match each query with the class it belongs to.

(a) Traditional supervised learning. (b) Few-shot learning.

Figure 1: Comparison between supervised and few-shot learning.
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Knowledge Transfer

I Store knowledge gained when solving one problem and apply it to
another related problem.

I Example: Train a classification model on animals, and the
knowledge learned can help classify plants.
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Graph Few-shot Learning Problem

Input

I A sequence of graphs {G1,G2, · · · ,GNt
} from a distribution E .

I Support set Si = {(xsii,j , y
si
i,j)}n

si

j=1 of nsi labeled nodes.

I Query set Qi = {(xqii,j , y
qi
i,j)}n

qi

j=1 of nqi unknown nodes.

Goal

I For each query in Q, predict its corresponding label.
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Graph Few-shot Learning Problem (cont’d)

Label Prediction

I With some similarity metric d, associate query node j’s embedding
with one in support set S, then predict the label according to that of
the support node.

label(qi,j) = argyi,j min d
(
fθ(A, x

qi,j
i,j ), (fθ(A, x

si
i,j), y

si
i,j)
)

(1)

I Alternatively, associate j with the closest geometric center
(prototype) of nodes’ representations in some class k:
cki =

∑
x
si
i,j∈Sk

i
fθ(A, x

si
i,j)/

∣∣Ski ∣∣.
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Graph Few-shot Learning Problem (cont’d)

Loss

I For each graph Gi, the loss is defined as

Lki = −
∑

(xqi
i,j ,y

qi
i,j∈Qk

i )

log
exp

(
−d
(
fθ(A,x

qi
i,j), c

k
i

))∑
k′ exp

(
−d
(
fθ(A,x

qi
i,j), c

k′
i

)) (2)

Qki is the support set of class k in graph Gi.
I The loss of all nodes in graph Gi is the summation over all classes,

i.e., Li =
∑
k Lki .

Objective

I Learn a GNN representation fθ, such that Li is minimized for every
observed Gi,Gi ∼ E .

min
θ

∑
i

Li (3)
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Challenges

I Different nodes in then same graph are not identically and
independently distributed as different images.

I Knowledge transfer formulated as parameter initialization and metric
space is not sufficient to capture complex, multi-level relations and
structures in graphs.
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GFL: Overall Framework

Authors propose Graph Few-shot Learning (GFL) algorithm, aiming to
adapt graph-structure knowledge gained from observed graphs to newly
discovered ones by exploiting both node and graph level relations and
structures.

Specifically, it contains the following components:

I Prototype GNN (PGNN): Learn each class k’s prototype
representation with support set Ski ,∀k.

I Hierarchical Graph Representation Gate: Learn graph-level
representation and ensure knowledge transfer among similar graphs.

I Auxiliary Graph Reconstruction: Enhance training stability and
representation quality.

They corresponds to Part (a), (b), and (c) in Fig. 2, respectively.

Data Exploration & Extracting Lab @ PolyU Graph Few-shot Learning January 21, 2021 10 / 25

https://www4.comp.polyu.edu.hk/~xiaohuang/DEEP_lab.html


GFL: Illustration

Figure 2: The proposed Graph Few-shot Learning (GFL) model.
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Prototype GNN

Model the relational structure among nodes in support set. The
relational structure Rki in Gi is constructed with some similarity metrics.
Hence the support nodes’ interactions with such relation is
PGNNφ

(
Rki , fθ(Ski )

)
. The prototype of each class k in Gi is

cki = Pooln
ski

j=1

(
PGNNφ

(
Rki , fθ(Ski )

)
[j]
)

(4)

PGNN is parameterized by φ. Pool denotes some kind of pooling

operator, and ns
k
i is the number of class k’s nodes in Sik.
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Hierarchical Graph Representation Gate

A simple PGNN may fail to capture complex graph structures, authors
introduce hierarchical graph representation gate to extract graph-specific
information and incorporate it with φ. For each level, there are two
stages:

I Node Assignment: Every low-level node is assigned to a high-level
community with an assignment GNN (AGNN).

I Representation Fusion: The adjacency matrix is transformed by
assignment matrix while the feature matrix is calculated by applying
assignment matrix on a fusion GNN (FGNN). Hence next-level
feature representation are aggregated from the transformed node
representations.
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Hierarchical Graph Representation Gate: Assignment

I Kr: # of nodes. Ar
i ,X

r
i : adjacency/feature matrix. r: level no.

I Assignment from node kr in level r to node kr+1 in level r + 1, i.e.,
pk

r→kr+1

i is defined as

pk
r→kr+1

i =
exp

(
AGNN (Ar

i ,X
r
i ) [kr, kr+1]

)∑Kr+1
k̄ri =1 exp

(
AGNN (Ar

i ,X
r
i ) [kr, k̄r+1]

) (5)

AGNN (Ar
i ,X

r
i ) [kr, kr+1] ∈ R1 denotes the assignment value from

node kr in level r to node kr+1 in level r+ 1. Pr→r+1
i ∈ RKr×Kr+1

is the whole assignment matrix.
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Hierarchical Graph Representation Gate: Fusion

After calculating assignment matrix Pr→r+1
i . The transformed adjacency

and feature matrix are calculated as follows

Ar+1
i =

(
Pr→r+1
i

)>
Ar
iP

r→r+1
i

Xr+1
i =

(
Pr→r+1
i

)>
FGNN (Ar

i ,X
r
i )

(6)

Hence the feature representation hr+1
i of level r + 1 is aggregated

by

hr+1
i = PoolK

r+1

kr+1

((
Pr→r+1
i

)>
FGNN (Ar

i ,X
r
i ) [kr+1]

)
(7)
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Fusion (cont’d)

After calculating each level’s representation, a set of hi’s, i.e.,
Hi =

{
h1
i , · · · ,hRi

}
encodes Gi’s structure from different levels. To

obtain the final graph representation hi, another aggregator is
used

AGGt(Hi) =

{
1
R

∑R
r hri , t = mean

1
R

∑R
r β

r
i h

r
i = 1

R

∑R
r

q>
i hr

i )∑R
r′=1

qi
>hr

′

i h
r
i , t = att

(8)

The final representation hi is expected to be graph-specific. Additionally,
a gate function gi = T (hi) is introduced to tailor graph structure specific
information. Thus the global transferable knowledge is gated by gi

φi = gi � φ
gi = T (hi) = σ(Wghi + bg)

(9)
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Auxiliary Graph Reconstruction

Matching loss is usually insufficient for training informative node
representation. fθ(·) is refined as an autoencoder and an additional
reconstruction loss is applied

Lr(Ai,Xi) =
∥∥∥Ai −GNNdec(Zi)GNN>dec(Zi)

∥∥∥2

F
(10)

Zi = GNN(Ai,Xi) is the representation of Gi. ‖ · ‖F is the Frobenius
norm.

Combining Lr with PGNN’s few-shot loss, the training objective of
proposed GFL is

min
Θ

Nt∑
i=1

Li + ηLr(Ai,Xi) (11)
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Accuracy on node classification

Figure 3: Accuracy on various graph datasets
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Ablation Study and Latent Space Analysis

Figure 4: Upper table: Ablation study of GFL. Lower figures: Node embeddings
in latent space
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Contributions

I Propose GFL, which adapts metric-based few-shot learning to graph
representation learning.

I Integrate node and graph-level knowledge to learn a transferable
metric space.

I Improve node classification performances on new graph with
knowledge from auxiliary graphs.
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Thank You for Your Attention

Q & A
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