Al4Science: Neural Networks for Molecular Property Prediction

Zhiming Xu zx2rw@virginia.edu

School of Engineering and Applied Science University of Virginia

September 17, 2021

IIVA	l)ata	
		··· •

Molecular Neural Networks

September 17, 2021 1 / 40

▲ 伊 ▶ → 三

Molecule and particles to make it

Physical laws at the scale of tiny particles

Molecular Neural Networks

Deep Tensor Neural Network

SchNet

PhysNet

DimeNet

Discussions

Model comparison

Experimental results

イロト イヨト イヨト イヨト

- ► *Atom*: the smallest unit of ordinary matter that forms a chemical element, composed of a nucleus and one or more electrons.
- Molecule: an electrically neural group of two or more atoms held together by chemical bonds.
- Chemical bond: an attractive force between atoms, ions, or molecules that enables the formation of chemical compounds.

- Molecules can take different shapes, depending on the chemical bonds as well as non-bond forces, such as electrostatic attraction/repulsion.
- For chemical bonds, they can have different lengths and form various angles. The following figures show them in an ammonia and a methane molecule (both from Wikipedia).

Image: A math the second se

Molecule and particles to make it

Physical laws at the scale of tiny particles

Molecular Neural Networks

Deep Tensor Neural Network

SchNet

PhysNet

DimeNet

Discussions

Model comparison

Experimental results

- E - N

・ロト ・日 ・ ・ ヨト ・

- Since atoms are too small, Newtonian mechanics do not work on it. They have the *wave-particle duality*, and their behavior can be described by *wave functions*.
- Specifically, suppose that a quantum system, such as an electron, is represented by the wave function Ψ, then we have (time-dependent) Schrödinger equation

$$\begin{split} &i\hbar\frac{\mathrm{d}}{\mathrm{d}t}|\Psi(t)\rangle = \hat{H}|\Psi(t)\rangle,\\ &\hat{H} = \left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial^2 x} + V(x,t)\right) \end{split}$$

The probability of finding this electron in position x at time t, i.e., $\Pr(x, t)$, equals the square of the wave function's modulus.

< □ > < 同 > < 回 > < 回 >

If we only consider a stationary quantum system that does not change over time, then the derivative w.r.t time t should be 0.

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\Psi(t)\rangle = 0.$$

Therefore, the right side of time-dependent Schrödinger equation also equals $\boldsymbol{0}$

$$\hat{H}|\Psi(t)\rangle = \left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial^2 x} + V(x,t)\right)|\Psi(t)\rangle = 0.$$

Time t becomes irrelevant here and can be eliminated. As a result, we have the (time-independent) *Schrödinger equation*

$$\hat{\mathbf{H}} \left| \Psi \right\rangle = E \left| \Psi \right\rangle.$$

Image: A match the second s

Remarks on time-independent Schrödinger equation

 $\hat{\mathbf{H}} \left| \Psi \right\rangle = E \left| \Psi \right\rangle$

- lt is an eigenvalue equation. Specifically, Ψ is the eigenfunction of the linear operator \hat{H} , with corresponding eigenvalue(s) E.
- ► It is linear. If ψ_1 and ψ_2 are solutions to it, then any linear combination of them, $\psi = \alpha \psi_1 + \beta \psi_2$, is also a solution.
- If \hat{H} is irrelevant to time t, the wave function Ψ can be written in $\psi(\mathbf{r})\psi(t)$, and it can be solve for certain cases.

Molecule and particles to make it

Physical laws at the scale of tiny particles

Molecular Neural Networks

Deep Tensor Neural Network

SchNet

PhysNet

DimeNet

Discussions

Model comparison

Experimental results

イロト イヨト イヨト イヨト

DTNN [1]

Input

- ► Nuclear charges Z.
- ▶ Pairwise distances **D**.

Structure

- Atom embedding.
- Distance expansion.
- Interaction.
- Individual contribution.
- Summation.

Figure 5: Overall framework of DTNN.

イロト イヨト イヨト イヨー

DTNN – Atom Embedding and Distance Expansion

Atom embedding.

Randomly initialized vector for each kind of elements.

$$\mathbf{c}_i^{(0)} = \mathbf{c}_{\mathbf{Z}_i} \in \mathbb{R}^B$$

Gaussian expansion of the atom-wise distances¹.

$$\hat{\mathbf{d}}_{ij} = \left[\exp\left(-\frac{\left(\mathbf{D}_{ij} - (\mu_{\min} + k\Delta\mu)\right)^2}{2\sigma^2} \right) \right]_{k \in \{0, 1, \cdots, \mu_{\max}/\Delta\mu\}}$$

Figure 6: Atom embedding and distance expansion.

UVA Data Mining

DTNN – Interaction

▶ Interaction (*T* passes in a row).

$$\mathbf{c}_i^{(t+1)} = \mathbf{c}_i^{(t)} + \sum_{j \neq i} \mathbf{v}_{ij}.$$

 \mathbf{v}_{ij} is the message passed to atom i from j in the form of

$$\mathbf{v}_{ij} = \tanh\left[\mathbf{W}^{\mathrm{cf}}\left(\left(\mathbf{W}^{\mathrm{fc}}\mathbf{c}_{j} + \mathbf{b}^{\mathrm{f}_{1}}\right) \circ \left(\mathbf{W}^{\mathrm{df}}\hat{\mathbf{d}}_{ij} + \mathbf{b}^{\mathrm{b}_{2}}\right)\right)\right].$$

Figure 7: Interaction module of DTNN. It loops for T times.

UVA Data Mining

・ロト ・日 ・ ・ ヨト ・

Individual contribution.

$$\mathbf{o}_{i} = \tanh\left(\mathbf{W}^{\text{out}_{1}}\mathbf{c}_{i}^{(T)} + \mathbf{b}^{\text{out}_{1}}\right)$$
$$\hat{E}_{i} = \mathbf{W}^{\text{out}_{2}}\mathbf{o}_{i} + \mathbf{b}^{\text{out}_{2}}$$

Additionally, to scale the output range, \hat{E}_i predicts the shifted value. To bring it back, $E_i = E_\sigma \hat{E}_i + E_\mu$.

Summation to obtain the total molecular energy.

$$E = \sum_{i} E_i$$

Image: A match the second s

Molecule and particles to make it

Physical laws at the scale of tiny particles

Molecular Neural Networks

Deep Tensor Neural Network

SchNet

PhysNet

DimeNet

Discussions

Model comparison

Experimental results

イロト イヨト イヨト イヨト

Input

- ► Nuclear charges Z.
- Positions R.

Structure

- Atom embedding.
- ► Atom-wise layers.
- Interaction.
- Filter generation.
- Property prediction.

Figure 8: Overall framework of SchNet.

イロト イヨト イヨト イ

Atom embedding.

Randomly initialized vector for each kind of elements.

$$\mathbf{c}_i^{(0)} = \mathbf{c}_{\mathbf{Z}_i} \in \mathbb{R}^B$$

Atom-wise layers.

$$\mathbf{c}_i^{(l+1)} = \mathbf{W}^{(l)}\mathbf{c}_i^{(l)} + \mathbf{b}^{(l)}$$

Image: A math the second se

Interaction.

$$\mathbf{x}_{i}^{(l+1)} = \left(\mathbf{X}^{(l)} \star \mathbf{W}^{(l)}\right)_{i} = \sum_{j=0}^{n_{\text{atoms}}} \mathbf{x}_{j}^{(l)} \circ \mathbf{W}^{(l)} \left(\mathbf{r}_{j} - \mathbf{r}_{i}\right).$$

Instead of a learnable tensor, the filter is a neural network $\mathbb{R}^3 \to \mathbb{R}^F$ with parameter matrix $\mathbf{W}^{(l)}$.

- ► Filter-generating networks.
 - *Rotational invariance*: use pairwise distances instead of relative positions and expand them into Gaussians

$$e_k (\mathbf{r}_j - \mathbf{r}_i) = \exp\left(-\gamma \left(\|\mathbf{r}_j - \mathbf{r}_i\| - \mu_k\right)^2\right).$$

• *Periodic boundary conditions*: for atoms with PBCs, \mathbf{x}_i should be invariant w.r.t. all periodic repetitions, $\mathbf{x}_i = \mathbf{x}_{ib} = \mathbf{x}_{ib} = \cdots$ for repeated unit cells a, b, \cdots .

イロト 不得 トイヨト イヨト

Filter satisfying PBCs

Given a filter $\tilde{\mathbf{W}}^{(l)}(\mathbf{r}_{jb} - \mathbf{r}_{ja})$ over all atoms with $\|\mathbf{r}_{jb} - \mathbf{r}_{ia}\| < r_{\text{cut}}$, where all *i*'s forms a set \mathcal{N} , the convolution operator works as follows

$$\mathbf{x}_{i}^{(l+1)} = \mathbf{x}_{im}^{(l+1)} = \frac{1}{|\mathcal{N}|} \sum_{\substack{j,n \\ \mathbf{r}_{jn}}} \mathbf{x}_{jn}^{(l)} \circ \tilde{\mathbf{W}}^{(l)} \left(\mathbf{r}_{jn} - \mathbf{r}_{im}\right)$$
$$= \frac{1}{|\mathcal{N}|} \sum_{j} \mathbf{x}_{j}^{(l)} \circ \underbrace{\left(\sum_{n} \tilde{\mathbf{W}}^{(l)} \left(\mathbf{r}_{jn} - \mathbf{r}_{im}\right)\right)}_{\mathbf{W}}.$$

The filter depends on the PBCs of the atomic system.

 ¹/_{|N|} serves as a normalization.

イロト イヨト イヨト イヨー

Visualize filters w/ and w/o PBC.

Figure 9: The first line shows filters that are only rotation-invariant, while the next two lines show filters aware of periodic boundaries.

Image: A math a math

Activation function Shifted softplus function is used because of its zero at 0 and its infinite continuity.

$$\operatorname{ssp}(x) = \ln\left(\frac{e^x + 1}{2}\right).$$

Property prediction

Atom *i*'s contribution:
$$\tilde{P}_i = ssp\left(\mathbf{W}^{out}\mathbf{x}_i^{(L)} + \mathbf{b}^{out}\right)$$

In total: $\tilde{P} = \sum_i \tilde{P}_i$

4 6 1 1 4

.∃ ▶ . ∢

SchNet - Training Objective

Special case in prediction.

When predicting atomic forces, SchNet predicts the energy and then differentiate it w.r.t. atoms' positions.

$$\tilde{\mathbf{F}}\left(\mathbf{Z}_{1},\cdots,\mathbf{Z}_{n},\mathbf{r}_{1},\cdots,\mathbf{r}_{n}\right)=-\frac{\partial\tilde{E}}{\partial\mathbf{r}}\left(\mathbf{Z}_{1},\cdots,\mathbf{Z}_{n},\mathbf{r}_{1},\cdots,\mathbf{r}_{n}\right).$$

Training objective

• Predict property P:

$$\mathcal{L}\left(\tilde{P},P\right) = \left\|P-\tilde{P}\right\|.$$

• Predict energies and forces in molecular dynamics:

$$\mathcal{L}\left((\tilde{E}, \tilde{\mathbf{F}}_{1}, \cdots, \tilde{\mathbf{F}}_{n}), (E, \mathbf{F}_{1}, \cdots, \mathbf{F}_{n})\right)$$
$$= \rho \left\| E - \tilde{E} \right\|^{2} + \frac{1}{n_{\text{atoms}}} \sum_{i=0}^{n_{\text{atoms}}} \left\| \mathbf{F}_{i} - \left(-\frac{\partial \tilde{E}}{\partial \mathbf{R}_{i}} \right) \right\|^{2}.$$

A D > A B > A

Molecule and particles to make it

Physical laws at the scale of tiny particles

Molecular Neural Networks

Deep Tensor Neural Network

SchNet

PhysNet

DimeNet

Discussions

Model comparison

Experimental results

イロト イヨト イヨト イヨト

Input

- ► Nuclear charges Z.
- Positions R.

Structure

- Atom embedding.
- ► Atom-wise layers w/ residual.
- Interaction.
- Output.
- Property prediction.

Image: A match the second s

Figure 10: Overall framework of PhysNet.

PhysNet – Atom Embedding

Atom embedding.

Atom-wise layer w/ residual.

$$\mathbf{c}_{i}^{(l+1)} = \mathbf{c}_{i}^{(l)} + \sigma \left(\mathbf{W}^{(l)} \mathbf{c}_{i}^{(l)} + \mathbf{b}^{(l)} \right)$$

Figure 11: Residual layers after atom embedding in PhysNet.

・ロト ・日下・ ・ ヨト・

Interaction

The interaction, i.e., filtering and message-passing is

$$\mathbf{x}_{i}^{(l+1)} = \mathbf{u}^{(l)} \circ \mathbf{x}_{i}^{(l)} + \mathbf{W}^{(l)} \sigma \left(\mathbf{v}_{i}^{(l)} \right) + \mathbf{b}^{(l)}.$$

 $\begin{aligned} \mathbf{u}^{(l)} \text{ is similar to a memory gate} \\ \mathbf{v}^{(l)}_i \text{ is the message prototype } \tilde{\mathbf{v}}^{(l)}_i \text{ after several residual blocks.} \\ \tilde{\mathbf{v}}^{(l)}_i &= \sigma \left(\mathbf{W}_{\mathbf{I}}^{(l)} \sigma \left(\mathbf{x}^{(l)}_i \right) + \mathbf{b}_{\mathbf{I}}^{(l)} \right) + \\ & \sum_{j \neq i} \underbrace{\mathbf{G}^{(l)} \underbrace{\mathbf{g}^{(r_{ij})}}_{\text{Attention mask}} \circ \sigma \left(\mathbf{W}_{\mathbf{J}}^{(l)} \sigma \left(\mathbf{x}^{(l)}_j \right) + \mathbf{b}_{\mathbf{J}}^{(l)} \right). \end{aligned}$

< □ > < □ > < □ > < □ > < □ >

Radial basis function used in PhysNet.

$$\begin{aligned} \mathbf{g}\left(r_{ij}\right) &= \left[g_{1}\left(r_{ij}\right), \cdots, g_{K}\left(r_{ij}\right)\right]^{\top} \\ g_{k}\left(r_{ij}\right) &= \phi\left(r_{ij}\right) \cdot \exp\left(-\beta\left(\exp\left(-r_{ij}\right) - \mu_{k}\right)^{2}\right) \\ \phi\left(r_{ij}\right) &= \begin{cases} 1 - 6\left(\frac{r_{ij}}{r_{\text{cut}}}\right)^{5} + 15\left(\frac{r_{ij}}{r_{\text{cut}}}\right)^{4} - 10\left(\frac{r_{ij}}{r_{\text{cut}}}\right)^{3} & r_{ij} < r_{\text{cut}} \\ 0 & r_{ij} \ge r_{\text{cut}} \end{cases} \end{aligned}$$

 $\phi(r_{ij})$ aims to ensure continuity when r_{ij} approaches r_{cut} .

イロト イヨト イヨト イヨ

► Output block.

For each module $m,\,{\rm the}$ atomic features pass through several residual layers, and then through a linear layer

$$\mathbf{y}_{i}^{m} = \mathbf{W}_{\mathsf{out}}^{m} \sigma\left(\mathbf{x}_{i}^{l}\right) + \mathbf{b}_{\mathsf{out}}^{m}$$

Property prediction.

Sum each module's atomic features and account for scale and shift.

$$\mathbf{y}_i = \mathbf{s}_{\mathbf{Z}_i} \cdot \left(\sum_{m=1}^{N_{\mathsf{module}}} \mathbf{y}_i^m
ight) + \mathbf{c}_{\mathbf{Z}_i}$$

Final prediction of total energy in a system is

$$E = \sum_{i}^{N_{\rm atoms}} E_i$$

Molecule and particles to make it

Physical laws at the scale of tiny particles

Molecular Neural Networks

Deep Tensor Neural Network

SchNet

PhysNet

DimeNet

Discussions

Model comparison

Experimental results

イロト イヨト イヨト イヨト

Input

- ► Nuclear charges Z.
- Pairwise distances D.

Structure

- RBF & SBF.
- Atom embedding.
- Interaction.
- Output.

Figure 12: Overall framework of DimeNet.

4 6 1 1 4

Interaction module that considers angles.

Directional message passing of DimeNet

$$\mathbf{x}_{ji}^{(l+1)} = f_{\mathsf{update}}\left(\mathbf{x}_{ji}^{(l)}, \sum_{k \in \mathcal{N}_j \setminus \{i\}} f_{\mathsf{int}}\left(\mathbf{x}_{kj}^{(l)}, \mathbf{e}_{\mathsf{RBF}}^{(ji)}, \alpha_{\mathsf{SBF}}^{(kj,ji)}\right)\right)$$

 Both RBF and SBF derive from a solution set of a special case of Schrödinger equation. This solution set in a spherical coordinate systems (called *spherical harmonics*) is

$$\Psi(d,\alpha,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left(a_{lm} j_l(kd) + b_{lm} y_l(kd) \right) Y_l^m(\alpha,\phi).$$

Image: A math the second se

▶ For SBF, a 2D basis is needed for d_{kj} and $\alpha_{(kj,ji)}$, therefore, m is set to 0. After normalization, it becomes²

$$\tilde{\alpha}_{\mathsf{SBF},ln}(d,\alpha) = \sqrt{\frac{2}{c^3}j_{j+1}^2(z_{ln})}j_l\left(\frac{z_{ln}}{c}d\right)Y_l^0\left(\alpha\right).$$

▶ For RBF, it should only have a single variable d, therefore, both l and m are set to 0. After normalization and using $j_0(d) = \frac{\sin d}{d}$

$$\tilde{e}_{\mathsf{RBF},n}(d) = \sqrt{\frac{2}{c}} \frac{\sin\left(\frac{n\pi}{c}d\right)}{d}.$$

In practice, an envelope function u(d) is introduced to ensure the continuity at the cutoff: α = u · α̃, e = u · ẽ.

 $^{^2}y_l(\cdot)$ is a divergent function, and it is eliminated by setting $b_{l\overline{m}}$ to 0 , ϵ , ϵ , δ

Figure 13: Visualize spherical basis $\tilde{\alpha}_{\text{SBF},ln}(d,\alpha)$ and radial basis $\tilde{e}_{\text{RBF},n}(d)$.

• • • • • • • • • •

► For the first layer

$$\mathbf{m}_{j}i^{(1)} = \sigma\left(\left[\mathbf{h}_{j}^{(0)} \| \mathbf{h}_{i}^{(0)} \| \mathbf{e}_{\mathsf{RBF}}^{(ji)}\right] \mathbf{W} + \mathbf{b}\right).$$

For subsequent layers

$$\tilde{\mathbf{m}}_{ji}^{(l+1)} = \sigma \left(\mathbf{W} \mathbf{m}_{ji}^{(l)} \right) + \sum_{k \in \mathcal{N}_j \setminus \{i\}} \left(\mathbf{W} \alpha_{\mathsf{SBF}}^{(kj,ji)} \right)^\top \mathbf{W} \left(\mathbf{e}_{\mathsf{RBF}}^{(ji)} \mathbf{W} \circ \mathbf{m}_{kj}^{(l)} \right)$$
$$\mathbf{m}_{ji}^{(l+1)} = \text{Residual} \left(\tilde{\mathbf{m}}_{ji}^{(l)}, \mathbf{m}_{ji}^{(l)} \right)$$

・ロト ・日下・ ・ ヨト・

DimeNet – Message-Passing (cont.)

Figure 14: Each module's operations in DimeNet.

UVA Data Mining				
		Data	Munu	
	0.04	Dala		12

September 17, 2021 34 / 40

・ロト ・日 ・ ・ ヨト ・

- Molecule and particles to make it
- Physical laws at the scale of tiny particles

Molecular Neural Networks

Deep Tensor Neural Network

SchNet

PhysNet

DimeNet

Discussions

Model comparison

Experimental results

	1 1 2 2	
0.07	¬ Da	uuuug .

イロト イヨト イヨト イヨ

Model Component	DTNN	SchNet	PhysNet	DimeNet
Atom emb.	Randomly initialized acc. to nuclear charge	w/ additional linear layers	w/ additional residual layers	w/ RBF
RBF	A series of Gaussians w/ same mean and evenly separated std.	w/ PBC	w/ scaling and continuity term	w/ spherical harmonics $e_{ m RBF}$ and $lpha_{ m SBF}$
Filter	Linear layer on RBF	w/ PBC awareness	Learned attention mask	w/ 2D $\alpha_{\rm SBF}(d,\alpha)$

・ロト ・日 ・ ・ ヨト ・

- Molecule and particles to make it
- Physical laws at the scale of tiny particles

Molecular Neural Networks

Deep Tensor Neural Network

SchNet

PhysNet

DimeNet

Discussions

Model comparison

Experimental results

IIV/A Data	
OVA Data	withing

イロト イヨト イヨト イヨト

Target	Unit	PPGN	SchNet	PhysNet	MEGNet-s	Cormorant	DimeNet
μ	D	0.047	0.033	0.0529	0.05	0.13	0.0286
α	$a_0{}^3$	0.131	0.235	0.0615	0.081	0.092	0.0469
ϵ_{HOMO}	meV	40.3	41	32.9	43	36	27.8
ϵ_{LUMO}	meV	32.7	34	24.7	44	36	19.7
$\Delta \epsilon$	meV	60.0	63	42.5	66	60	34.8
$\langle R^2 \rangle$	$a_0{}^2$	0.592	0.073	0.765	0.302	0.673	0.331
ŻPVE	meV	3.12	1.7	1.39	1.43	1.98	1.29
U_0	meV	36.8	14	8.15	12	28	8.02
U	meV	36.8	19	8.34	13	-	7.89
H	meV	36.3	14	8.42	12	-	8.11
G	meV	36.4	14	9.40	12	-	8.98
$C_{\rm V}$	$\frac{\text{cal}}{\text{mol K}}$	0.055	0.033	0.0280	0.029	0.031	0.0249
std. MAE	%	1.84	1.76	1.37	1.80	2.14	1.05
logMAE	-	-4.64	-5.17	-5.35	-5.17	-4.75	-5.57

Figure 15: Mean square error (MAE) on QM9 dataset. The prediction targets are 11 physical quantities of a molecule.

Image: A math the second se

Q & A

UVA Data Mining				
		\)st	3 IV/I	
	0.07	ι Daι	a 171	uuung .

• • • • • • • •

- K. T. Schütt, F. Arbabzadah, S. Chmiela, K. R. Müller, and A. Tkatchenko, "Quantum-chemical insights from deep tensor neural networks.," *Nature Communications*, vol. 8, no. 1, pp. 13890–13890, 2017.
- [2] K. T. Schütt, H. E. Sauceda, P. J. Kindermans, A. Tkatchenko, and K. R. Müller, "Schnet - a deep learning architecture for molecules and materials.," *Journal of Chemical Physics*, vol. 148, no. 24, pp. 241722–241722, 2018.
- [3] O. T. Unke and M. Meuwly, "Physnet: A neural network for predicting energies, forces, dipole moments, and partial charges.," *Journal of Chemical Theory and Computation*, vol. 15, no. 6, pp. 3678–3693, 2019.
- [4] J. Klicpera, J. Groß, and S. Günnemann, "Directional message passing for molecular graphs," in *ICLR 2020 : Eighth International Conference on Learning Representations*, 2020.