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Atom, Molecule & Chemical Bond

I Atom: the smallest unit of ordinary matter that forms a chemical
element, composed of a nucleus and one or more electrons.

I Molecule: an electrically neural group of two or more atoms held
together by chemical bonds.

I Chemical bond: an attractive force between atoms, ions, or
molecules that enables the formation of chemical compounds.

Figure 1: Bohr’s model®. Figure 2: Quantum mechanics’ model®.
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Molecular Geometry

I Molecules can take different shapes, depending on the chemical
bonds as well as non-bond forces, such as electrostatic
attraction/repulsion.

I For chemical bonds, they can have different lengths and form various
angles. The following figures show them in an ammonia and a
methane molecule (both from Wikipedia).

Figure 3: Shape of NH3 Figure 4: Shape of CH4.
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Quantum Mechanics

I Since atoms are too small, Newtonian mechanics do not work on it.
They have the wave-particle duality, and their behavior can be
described by wave functions.

I Specifically, suppose that a quantum system, such as the electron of
a hydrogen, is represented by the wave function Ψ, then we have
(time-dependent) Schrödinger equation

i~
d

dt
|Ψ(t)〉 = Ĥ|Ψ(t)〉,

Ĥ =

(
− ~2

2m

∂2

∂2x
+ V (x, t)

)
.

The probability of finding this electron in position x at time t, i.e.,
Pr(x, t), equals the square of the wave function’s modulus |Ψ(x, t)|2.
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Time-independent Schrödinger Equation

If we only consider a stationary quantum system that does not change
over time, then the derivative w.r.t time t should be 0.

i~
d

dt
|Ψ(t)〉 = 0.

Therefore, the right side of time-dependent Schrödinger equation also
equals 0

Ĥ|Ψ(t)〉 =

(
− ~2

2m

∂2

∂2x
+ V (x, t)

)
|Ψ(t)〉 = 0.

Time t becomes irrelevant here and can be eliminated. As a result, we
have the (time-independent) Schrödinger equation

Ĥ |Ψ〉 = E|Ψ〉.
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Time-independent Schrödinger Equation (cont.)

Remarks on time-independent Schrödinger equation

Ĥ |Ψ〉 = E|Ψ〉.

I It is an eigenvalue equation. Specifically, Ψ is the eigenfunction of
the linear operator Ĥ, with corresponding eigenvalue(s) E.

I It is intractable in current computational technology except for a
single hydrogen atom. However, if Ĥ is time-independent, the wave
function Ψ can be written as ψ(r)ψ(t), and solved in certain cases.

I It is linear. If ψ1 and ψ2 are solutions to it, then any linear
combination of them, ψ = αψ1 + βψ2, is also a solution.

I It implies that modeling a molecule as still, rigid spheres (atoms)
connected by fixed-length edges (bonds) is inaccurate.
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Motivations to Use NNs for Molecules

I The exact calculation of Schrödinger equation is prohibitively hard.
Many theories have already been proposed to give approximate
solutions, such as density function theory.

I Neural networks are good at approximating functions. Therefore,
they can be used to learn equations reflecting underlying physics
from data, and hence substitute them.
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Deep Tensor Neural Networks [1]

Input
I Nuclear charges Z.
I Pairwise distances D.

Structure
I Atom embedding.
I Distance expansion.
I Interaction.
I Individual contribution.
I Summation.

Figure 5: Overall framework of DTNN.
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DTNN – Atom Embedding and Distance Expansion

I Atom embedding.
Randomly initialized vector for each kind of elements.

c
(0)
i = cZi

∈ RB

I Gaussian expansion of the atom-wise distances1.

d̂ij =

[
exp

(
− (Dij − (µmin + k∆µ))

2

2σ2

)]
k∈{0,1,··· ,µmax/∆µ}

Figure 6: Atom embedding and distance expansion.

1This kind of functions defined only on distance is called radial basis function
(RBF).
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DTNN – Interaction

I Interaction (T passes in a row).

c
(t+1)
i = c

(t)
i +

∑
j 6=i

vij .

vij is the message passed to atom i from j in the form of

vij = tanh
[
Wcf

((
Wfccj + bf1

)
◦
(
Wdf d̂ij + bb2

))]
.

Figure 7: Interaction module of DTNN. It loops for T times.
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DTNN – Aggregation & Prediction

I Individual contribution.

oi = tanh
(
Wout1c

(T )
i + bout1

)
Êi = Wout2oi + bout2

Additionally, to scale the output range, Êi predicts the shifted value.
To bring it back, Ei = EσÊi + Eµ.

I Summation to obtain the total molecular energy.

E =
∑
i

Ei
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SchNet [2]

Input
I Nuclear charges Z.
I Positions R.

Structure
I Atom embedding.
I Atom-wise layers.
I Interaction.
I Filter generation.
I Property prediction.

Figure 8: Overall framework of SchNet.
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SchNet – Atom Embedding

I Atom embedding.
Randomly initialized vector for each kind of elements.

c
(0)
i = cZi

∈ RB

I Atom-wise layers.

c
(l+1)
i = W(l)c

(l)
i + b(l)
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SchNet – Interaction

I Interaction.

x
(l+1)
i =

(
X(l) ?W(l)

)
i

=

natoms∑
j=0

x
(l)
j ◦W

(l) (rj − ri) .

Instead of a learnable tensor, the filter is a neural network R3 → RF
with parameter matrix W(l).

I Filter-generating networks.

• Rotational invariance: use pairwise distances instead of relative
positions and expand them into Gaussians

ek (rj − ri) = exp
(
−γ (‖rj − ri‖ − µk)

2) .
• Periodic boundary conditions: for atoms with PBCs, xi should be

invariant w.r.t. all periodic repetitions, xi = xib = xib = · · · for
repeated unit cells a, b, · · · .
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SchNet – Incorporate PBC into Filter

Filter satisfying PBCs

Given a filter W̃(l) (rjb − ria) over all atoms with ‖rjb − ria‖ < rcut,
where all i’s forms a set N , the convolution operator works as follows

x
(l+1)
i = x

(l+1)
im =

1

|N |
∑
j,n
rjn

x
(l)
jn ◦ W̃

(l) (rjn − rim)

=
1

|N |
∑
j

x
(l)
j ◦

(∑
n

W̃(l) (rjn − rim)

)
︸ ︷︷ ︸

W

.

I The filter depends on the PBCs of the atomic system.

I
1

|N |
serves as a normalization.
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SchNet – Incorporate PBC into Filter (cont.)

Visualize filters w/ and w/o PBC.

Figure 9: The first line shows filters that are only rotation-invariant, while the
next two lines show filters aware of periodic boundaries.
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SchNet – Activation Function & Prediction

I Activation function
Shifted softplus function is used because of its zero at 0 and its
infinite continuity.

ssp(x) = ln

(
ex + 1

2

)
.

I Property prediction

Atom i’s contribution: P̃i = ssp
(
Woutx

(L)
i + bout

)
In total: P̃ =

∑
i

P̃i
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SchNet – Training Objective

I Special case in prediction.
When predicting atomic forces, SchNet predicts the energy and then
differentiate it w.r.t. atoms’ positions.

F̃ (Z1, · · · ,Zn, r1, · · · , rn) = −∂Ẽ
∂r

(Z1, · · · ,Zn, r1, · · · , rn) .

I Training objective

• Predict property P :

L
(
P̃ , P

)
=
∥∥∥P − P̃∥∥∥ .

• Predict energies and forces in molecular dynamics:

L
(
(Ẽ, F̃1, · · · , F̃n), (E,F1, · · · ,Fn)

)
= ρ

∥∥∥E − Ẽ∥∥∥2 + 1

natoms

natoms∑
i=0

∥∥∥∥Fi −
(
− ∂Ẽ

∂Ri

)∥∥∥∥2 .
UVA Data Mining Molecular Neural Networks September 17, 2021 22 / 42



Table of Contents

Backgrounds

Molecule and its making

Physical laws at the scale of tiny particles

Molecular Neural Networks

DTNN

SchNet

PhysNet

DimeNet

Discussions

Model comparison

Experimental results

UVA Data Mining Molecular Neural Networks September 17, 2021 23 / 42



PhysNet [3]

Input
I Nuclear charges Z.
I Positions R.

Structure
I Atom embedding.
I Atom-wise layers w/ residual.
I Interaction.
I Output.
I Property prediction.

Figure 10: Overall framework of
PhysNet.
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PhysNet – Atom Embedding

I Atom embedding.
I Atom-wise layer w/ residual

c
(l+1)
i = c

(l)
i +σ

(
W(l)c

(l)
i + b(l)

)
.

Figure 11: Residual layers after
atom embedding in PhysNet.
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PhysNet – Interaction

Interaction

The interaction, i.e., filtering and message-passing is

x
(l+1)
i = u(l) ◦ x(l)

i + W(l)σ
(
v

(l)
i

)
+ b(l).

I u(l) is similar to a memory gate.
I v

(l)
i is the message prototype ṽ

(l)
i after several residual blocks.

ṽ
(l)
i = σ

(
WI

(l)σ
(
x

(l)
i

)
+ bI

(l)
)

+

∑
j 6=i

G(l)

radial basis︷ ︸︸ ︷
g (rij)︸ ︷︷ ︸

Attention mask

◦σ
(
WJ

(l)σ
(
x

(l)
j

)
+ bJ

(l)
)
.
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PhysNet – RBF

PhysNet’s radial basis function.

g (rij) = [g1 (rij) , · · · , gK (rij)]
>

gk (rij) = φ (rij) · exp
(
−β (exp (−rij)− µk)

2
)

φ (rij) =

{
1− 6

(
rij
rcut

)5

+ 15
(
rij
rcut

)4

− 10
(
rij
rcut

)3

, rij < rcut

0, rij ≥ rcut

φ (rij) aims to ensure continuity when rij approaches rcut.
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PhysNet – Output & Prediction

I Output block.
For each module m, the atomic features pass through several
residual layers, and then through a linear layer

ymi = Wm
outσ

(
xli
)

+ bmout

I Property prediction.
Sum each module’s atomic features and account for scale and shift.

yi = sZi ·

(
Nmodule∑
m=1

ymi

)
+ cZi

Final prediction of total energy in a system is

E =

Natoms∑
i

Ei
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PhysNet – Output & Prediction (cont.)

I Account for long-range interaction beyond cutoff ccut.

E =

Natoms∑
i=1

Ei + ke

Natoms∑
i=1

Natoms∑
j>i

q̃iq̃jχ(rij) + ED3.

χ(rij) is an envelope of cutoff function φ(rij), and ED3 is a result
from DFT-D3 or learned by NN.

I Correct partial charges q̃i.

q̃i = qi −
1

Natoms

Natoms∑
j=1

qj −Q

 .
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DimeNet [4]

Input
I Nuclear charges Z.
I Pairwise distances D.

Structure
I RBF & SBF.
I Atom embedding.
I Interaction.
I Output.

Figure 12: Overall framework of
DimeNet.
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DimeNet – Interaction

Interaction module that considers angles.

I Directional message passing of DimeNet

x
(l+1)
ji = fupdate

x
(l)
ji ,

∑
k∈Nj\{i}

fint

(
x

(l)
kj , e

(ji)
RBF, α

(kj,ji)
SBF

) .

I Both RBF and SBF derive from a solution set of a special case of
Schrödinger equation. This solution set in a spherical coordinate
systems (called spherical harmonics) is

Ψ(d, α, φ) =

∞∑
l=0

l∑
m=−l

(almjl(kd) + blmyl(kd))Y ml (α, φ).
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DimeNet – SBF & RBF

I For SBF, a 2D basis is needed for dkj and α(kj,ji), therefore, m is
set to 0. After normalization, it becomes2

α̃SBF,ln(d, α) =

√
2

c3
j2
j+1(zln)jl

(zln
c
d
)
Y 0
l (α) .

I For RBF, it should only have a single variable d, therefore, both l

and m are set to 0. After normalization and using j0(d) =
sin d

d

ẽRBF,n(d) =

√
2

c

sin
(
nπ
c d
)

d
.

I In practice, an envelope function u(d) is introduced to ensure the
continuity at the cutoff: α = u · α̃, e = u · ẽ.

2yl(·) is a divergent function, and it is eliminated by setting blm to 0.
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DimeNet – SBF & RBF (cont.)

Figure 13: Visualize spherical basis α̃SBF,ln(d, α) and radial basis ẽRBF,n(d).
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DimeNet – Message-Passing

I For the first layer

mji
(1) = σ

([
h

(0)
j ‖h

(0)
i ‖e

(ji)
RBF

]
W + b

)
.

I For subsequent layers

m̃
(l+1)
ji = σ

(
Wm

(l)
ji

)
+

∑
k∈Nj\{i}

(
Wα

(kj,ji)
SBF

)>
W
(
e

(ji)
RBFW ◦m(l)

kj

)

m
(l+1)
ji = Residual

(
m̃

(l)
ji ,m

(l)
ji

)
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DimeNet – Message-Passing (cont.)

Figure 14: Each module’s operations in DimeNet.
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Compare Building Blocks

Model /
Component

DTNN SchNet PhysNet DimeNet

Atom
embedding

Randomly initialized
acc. to nuclear charge

w/
linear layers

w/
residual layers

w/
linear & RBF

RBF
A series of Gaussians

w/ same std. and
evenly separated mean

Gaussians
w/ scaling

Gaussians
w/ scaling and

continuity

spherical harmonics
αSBF(d, α) and

continuity

Filter
Linear layer

on RBF
Linear, w/ PBC

awareness

Learned
attention

mask
w/ 2D SBF

Output
Sum each atom’s

contribution
Sum each atom’s

contribution

w/ correction
for long-range

interaction

Sum each atom’s
contribution
in each layer

Similarities
1. Each type of element has a distinct, learnable embedding.
2. Atom only interacts with neighbors within cutoff range.
3. Molecular property is the summation of each atom’s contribution.

Table 1: Comparing the differences and similarities of different models.
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Performances Comparison

Table 2: Mean absolute error (MAE) on QM9 dataset [4]. The prediction
targets are 11 physical quantities of a molecule.
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Thank You for Your Attention

Q & A
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