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Messaging-Passing Graph Neural Networks

Current Graph Neural Networks are commonly following the spectral
message passing strategy

H(l+1) = σ
(
ÂH(l)W

)

I Â: normalized adjacency matrix.

I H: representation (attribute) matrix.

I W : trainable parameter matrix.
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Problems with Message-Passing

However, once applied on massive graphs, it can cause problems

I Computational costs in matrix multiplication.

I Space costs in storing matrices and intermediate results.
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Scalable Graph Learning

I Precomputation: ignore parameter matrix W ’s at first and
precompute ÂlH that passes information to l-hop neighbors.

I Sampling: sample subsets of nodes and edges with mini-batch
training.

I Data Transformation: transform large graph to sequences, e.g., by
random walk.
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Simplifying Graph Convolutional Networks [1]

I Precompute up to k-th order of Â to receive message from the
k-hop neighbors.

I Propagation: H(l) = σ
(
Â(l)XW

)
.

Figure 1: Comparison between GCN and SGC’s message-passing.
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(Approximated) Personalized Page-rank of Neural Predictions [2]

I Connect GCN’s limit distribution with that of page-rank.

I Separate neural networks from information propagation.

I Simplify propagation rule and reduce parameters, leading to lower
computational costs.

Figure 2: Neural Predictions Propagated with Page-rank.
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(Approximated) Personalized Page-rank of Neural Predictions (cont.)

I PPNP: Z = softmax

(
α
(
In − (1− α)Â

)−1
H

)
,H = fθ(X).

I APPNP:

Z(0) = H = fθ(X)

Z(l+1) = (1− α)ÂZ(l) + αH

Z(L) = softmax
(
(1− α)ÂZ(L−1) + αH

)
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Problem with Precomputation

I Reduce the model’s representation ability and lower its performance.

I Still involve expensive multiplications between huge matrices.
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Graph Sample and Aggregate [3]

Sample neighbors and aggregate their information.

Figure 3: Illustration of GraphSAGE forward propagation.

UVA Data Mining Scalable Graph Learning July 16, 2021 13 / 36



GraphSAGE (cont.)

Forward Propagation

Result: Node i’s representation zi after K iterations
~h0i ← ~hi,∀i ∈ V;
for k = 1 . . .K do

for i ∈ V do
~hkNi
← AGGREGATEk

(
{~hj ,∀j ∈ Ni}

)
;

~hki ← σ
(
W k ·

[
~hk−1i : ~hkNi

])
;

end

~hki ←
~hk

i

‖~hk
i ‖2

,∀i ∈ V;

end

~zi ← ~hKi ,∀i ∈ V
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GraphSAGE (cont.)

Graph-Based Loss Function

LG(~hi) = − log
(
σ
(
~h>i
~hj

))
−Q ·

(
Evi∼Pn(i)

log
(
σ
(
−~h>i ~hvi

)))
I j is a node that co-occurs near i on fixed-length random walk.
I σ is the sigmoid function, σ(x) = 1

1+e−x

I Pn is a negative sampling distribution, Q is # of negative samples.

Based on loss LG, the parameters in Algorithm 1 are optimized with
stochastic gradient descend.
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PinSAGE [4]

Sample neighbors more wisely with the help of random walk.

Figure 4: Illustration of PinSAGE forward propagation.
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Key Novelty over GraphSAGE

I Construct Neighborhood graph via Random Walk. PinSAGE uses
random walk to select neighbors with highest visit counts, which
takes the importance of different neighbors into consideration and
can control how many nodes to sample.

I MapReduce computation to avoid overhead. The bottom-up
computation in Figure 4 fits in MapReduce. First map each node to
the latent space, then join them to the upper-level nodes, and finally
reduce to perform the aggregation.
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Problem with Node-wise Sampling

The size of neighborhood increases exponentially with more layers.
Therefore, the computational and storage costs are more and more
expensive if the model goes deeper.
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FastGCN [5]

Key Assumptions

I The whole large graph is possibly infinite.

I Each sampled subgraph’s nodes are i.i.d.

I The convolution and loss function is seen as integration and
expectation.

Figure 5: Comparison between mini-batch GCN and FastGCN.
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FastGCN (cont.)

I Message-passing and loss as expectation.

h(l+1)(v) = σ
(
Ep
[
Â(v, u)h(l)(u)W (l)

])
L = Ep

[
L(h(M)(v))

]
I Expectation Approximation.

H(l+1)(v, :) = σ

N
nl

nl∑
j=1

Â(v, u
(l)
j )H(l)(u

(l)
j , :)W

(l)


L =

1

nM

nM∑
i=1

L(H(M)(u
(M)
i , :))

nl is # of samples in the l-th layer, N is # of all samples.
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FastGCN (cont.)

I Unbiased Approximation via Importance Sampling.1

h(l+1)(v) = σ

(
Eq
[
Â(v, u)h(l)(u)W (l) · p(u)

q(u)

])

Analytically, q∗ ∝
√
Ev
[
Â(v, u)2

]
·
∣∣h(l)(u)W (l)

∣∣ · p(u) when the

deviation of approximation is minimized.

However, to reduce computational costs and ensure stability, it is

approximated by q̂ ∝
√
Ev
[
Â(v, u)2

]
=
∥∥∥Â(:, u)

∥∥∥2.

1If r.v. X̄ is used to estimate X, then X̄ is unbiased if E[X̄] = X. The deviation
of such estimation is E[X̄2] − E2[X̄].
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Problems with Layer-wise Sampling

I To ensure unbiased approximation, the sampling algorithm itself is
expensive.

I If the i.i.d assumption does not hold, e.g., the graph is large and
sparse, the model might be unable to learn useful representations.

UVA Data Mining Scalable Graph Learning July 16, 2021 23 / 36



Table of Contents

Message-Passing GNNs

Overview

Precomputation

SGC

(A)PPNP

Sampling-based Methods

Node-wise Sampling

Layer-wise Sampling

Graph-wise Sampling

Data Transformation

Node2Vec

UVA Data Mining Scalable Graph Learning July 16, 2021 24 / 36



GraphSAINT [6]

Key Novelty

I Sample subgraphs before training, then draw different subgraphs to
run a full GCN on them and aggregate information.

I Address the aggregation bias incurred by subgraph sampling.

Figure 6: Illustration of GraphSAINT’s “batch” and “unbatch”.
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GraphSAINT (cont.)

For a subgraph Gs = (Vs, Es), the aggregation process of node v ∈ Gs
is

H(l+1)
v =

∑
u∈V

Âv,u

αu,v
(W (l))>H(l)

u Iu|v

I αu,v is aggregator normalization.

I Â is the normalized adjacency matrix.

I Iu|v =

 0, if u ∈ Vs ∧ (u, v) /∈ Es
1, if (u, v) ∈ Es
undef., ifv /∈ Vs
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Debias and Minimize Deviation

To debias and minimize deviation in the approximation of H
(l+1)
v , it is

proved that

I When αu,v = pu,v/pv, then H
(l+1)
v is the unbiased approximation of

node v’s aggregation.

I When |Es| = m, pu,v =
m∑

e′

∥∥∥∑l b
(l)
e′

∥∥∥
∥∥∥∑l b

(l)
e

∥∥∥, the deviation

induced from approximation is minimized.

b(l)e = Âv,uH
(l)
u + Âu,vH

(l)
v ≈ Âv,u + Âu,v.
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Problems with Graph-wise Sampling

The nodes in all subgraphs are connected, leading to intrinsic bias
within each mini-batch.
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Node2Vec [7]

I Generate paths via random walks over the entire graph to obtain
“corpus”.

I Apply word2vec algorithm on such corpus to get node
representations.

Figure 7: Illustration of node2vec.
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Problems with Data Transformation

Graph structure is not well preserved and collapses to a collection
of paths and useful information can be lost when generating
“corpus”. Therefore, it can prevent the model from learning
expressive representations and hinder its performance.
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Thank You for Your Attention

Q & A
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