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Where Uncertainties Arise

Uncertainties can be observed in many real-world scenarios, such as
investment returns, endemic cases, and etc.

The following figure shows an example of uncertainties in COVID case
prediction in the U.S., the shaded areas are the 95% uncertainly
interval1.

1https://covid19.healthdata.org/united-states-of-america
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Types of Uncertainties

By modeling such processes with machine learning techniques, two types
of uncertainties inevitably arise.

I Aleatoric (data uncertainty). The irreducible uncertainty exists
inherently in data, i.e., indeterministic outcomes.

I Epistemic (model uncertainty). The uncertainty results from lack of
knowledge and informative data.

Figure 1: Aleatoric and epistemic uncertainties in a timeseries prediction [1].
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Quantify Uncertainties

To account for such uncertainties, Uncertainty Quanlification (UQ) is
crucial to make ML/DL models accurate and trustworthy in critical
systems or decision-making processes.

The predictive uncertainties (PU) associated with a model is expressed as
a direct sum of aleatoric (AU) and epistemic ones (EU).

PU = EU +AU
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Epistemic Uncertainties

Since EU is intrinsic to the model, it can be formulated as a probability
distribution over model parameters.

Denote training dataset for classification by Dtrain = {X,Y } consisting of
samples (xi, yi). Each xi ∈ Rf is a feature vector and yi is its label
(scalar in regression and category in classification). A model is a function
fΘ with paratermeters Θ that takes x and predicts y. The model
likelihood is thus p (y | x,Θ).

The posterior distribution p(Θ | x, y) for Dtrain can be obtained by Bayes’
theorem

p(Θ | X,Y ) =
p(Y | X,Θ)p(Θ)

p(Y | X)
.
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Epistemic Uncertainties (cont.)

During testing, a sample x∗’s label w.r.t. p(Θ|X,Y ) can be
predicted

p(y∗ | x∗, X, Y ) =

∫
p(y∗ | x∗,Θ)p(Θ | X,Y ) dΘ.

In fact, p(Θ | X,Y ) accepts no analytical solutions, and can only be
approximated by variational parameters, i.e., qΦ(Θ). It will thus be
approximated to be close to the model’s posterior

KL (qΦ (Θ) ‖p (Θ|X,Y )) =

∫
qΦ(Θ) log

qΦ(Θ)

p(Θ | X,Y )
dΘ.
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Epistemic Uncertainties (cont.)

The predictive distribution pΘ(y∗ | x∗, X, Y ) can be approximated by
minimizing the KL divergence

pΘ(y∗ | x∗, X, Y ) ≈
∫
pΘ(y∗ | x∗,Θ)q∗Φ(Θ) dΘ.

Or equivalently, maximize the evidence lower bound (ELBO)

LV I(Φ) :=

∫
qΦ(Θ) log p(Y | X,Θ) dΘ−KL(qΦ(Θ)‖p(Θ)).

The process above is called variational inference (VI).
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Epistemic Uncertainties (cont.)

To obtain data-dependent uncertainty, the precision (in a regression
model) can be formulated as a function of data.

A possible way to quantify epistemic uncertainties is mix two functions,
predictive mean fΘ(x) and model precision gΘ(x) in a likelihood function
yi = N

(
fΘ(x), gΘ(x)−1

)
.
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Monte Carlo Dropout

Monte Carlo (MC) can be used to approximate the aforementioned
posterior, but it can be extremely costly to be integrated into DL
frameworks. MC dropout aims to reduce the computational cost.

Dropout is a regularization technique used in training neural networks. It
randomly zeros out a neuron’s output with a preset probability p

Dropout(Z) = d ◦ Z = d ◦ (W · x) ,d ∈ Rh,di ∼ B(1− p).
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Monte Carlo Dropout (cont.)

MC dropout introduces dropout in testing. Instead of serving as a
regularization, dropout here is a Monte Carlo sampling from all possible
models. Then, the approximation is made by running dropout several
times and then averaging results.

Other types of probability distributions and drop schemes can also be
used, like Gaussian dropout (di ∼ N(0, 1)) and spatial Bernoulli dropout
(on feature maps).
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Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is also effective in approximating the
posterior. It works by first sampling a random variable z0 from
distribution q(z0) or q(z0|x), then it applies a stochastic transition to the
series of zi

Zt ∼ q(zt|zt−1, x).

This transition will repeat many times until its outcome converges to the
posterior distribution. However, this process requires a large amount of
computational time to converge.
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Markov Chain Monte Carlo (cont.)

The stochastic gradient MCMC (SG-MCMC) [2], [3] is proposed for
training deep neural networks. It only tries to estimate the gradient of
each mini-batch, thus largely reducing computational costs.
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Variatinal Inference

Variational inference (VI) is an approximation method that learns the
posterior distribution over Bayes neural network weights.

VI-based methods consider the posterior approximation as an
optimization problem besides the task’s objective, therefore, it is
optimized during the training with gradient descend as well.
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Variational Inference (cont.)

Approximating posterior distribution with VI in training, the loss
becomes

L(Θ) =
1

2|D|

|D|∑
i=1

LR(yi, xi) +
1

|D|
KL(qθ(w)‖p(w)).

LR(y, x) = − log(τ̂x)
>
1 +

∥∥∥√τ̂x ◦ (y − µ̂x)
∥∥∥2

µ̂x = µ̂(x,wµ), w ∼ qθ(w), τ̂x = τ̂(x,wr).

D is the training set and |D| is the number of samples.
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Variational Autoencoder

Variational autoencoder (VAE) is a deep learning model that uses VI in
an encoder-decoder structure. The encoder maps high-dimensional data
to a low-dimensional latent variable, and the decoder reproduces the
original data from the latent variable that should conform to a prior
distribution.
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Variational Autoencoder (cont.)

A probabilistic model PΘ(x) that produces sample x from a latent
variable z is

pΘ(x) =

∫
z

pΘ(x|z)p(z)dz.

VI is used to model the evidence lower bound (ELBO)

log pΘ(x) = EqΦ(z|x) [log pΘ(x|z)]−DKL (qΦ (z|x) ‖p(x)) .
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Variational Autoencoder (cont.)

Figure 2: A VAE’s structure. Encoder is colored in green and decoder in blue.
z = µ+ ẑ · σ. ẑ is sampled from a prior distribution. µ and σ are both NN
outputs.
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Deep Gaussian Processes

Gaussian processes (GPs) is a non-parametric type of Bayesian models. It
first encodes the similarity between samples with kernel function k(·, ·),
and represents distributions over the latent variables w.r.t. the input
samples as a Gaussian distribution fx ∼ N (m(x), k(x, x′)).

The output y then becomes a distribution based on a likelihood function
y|fx ∼ h(fx).
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Deep Gaussian Processes (cont.)

To solve GPs analytically requires to take matrix inverses, which is of
O(N3) complexity w.r.t. the scale of data. Therefore, a variational lower
bound is optimized instead

log p(Y ) ≥
∑

y,x∈Y,X
Eq(fx) [log p (y|fx)]−KL (q(fZ)‖p(fZ))

q(fx) is the variational approximation to the distribution of fx and Z is
the locations of the inducing points.
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Deep Gaussian Processes (cont.)

Figure 3: A Gaussian Process Deep Neural Network framework to increase
robustness in image classification [4]. Architecture A and B are both ordinary
CNNs for image classification, while C utilizes GP to ensure robust
performances over adversarial samples.
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Maximum a Posterior Estimation

A maximum a posterior probability (MAP) estimate is an estimate of an
unknown quantity on the basis of observable data. It is similar to
maximum likelihood estimation (MLE). But its optimization objective
utilizes an additional prior distribution over the quantity to be
estimated.
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Maximum a Posterior Estimation (cont.)

Suppose an unobserved parameter θ and its observation x. The likelihood
function is θ 7→ f(x | θ) with its MLE θ̂MLE(x) = arg max

θ
f(x|θ).

Assume an additional prior g over θ exists. Then θ can be seen as a
random variable and its posterior distribution can be calculated from
Bayes’ theorem.

θ 7→ f(θ | x) =
f(x | θ) g(θ)∫

Θ

f(x | ϑ) g(ϑ) dϑ
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Maximum a Posterior Estimation (cont.)

The MAP then estimates θ as the mode of the posterior distribution of
this r.v.

θ̂MAP(x) = arg max
θ

f(θ | x)

= arg max
θ

f(x | θ) g(θ)∫
Θ

f(x | ϑ) g(ϑ) dϑ

= arg max
θ

f(x | θ) g(θ).

The denominator is eliminated as it is positive and irrelevant to θ.
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Laplace Approximations

Laplace approximations (LAs) can be used to estimate the posterior

distribution f(x | θ). For general LAs,
∫ b
a
g(x)dx is approximated in the

following way

Let h(x) = log g(x),

∫ b

a
g(x)dx =

∫ b

a
exp(h(x))dx∫ b

a
exp(h(x))dx ≈

∫ b

a
exp

(
h(x0) + h′(x0)(x− x0) +

1

2
h′′(x0)(x− x0)

2

)
(Taylor series approximation)

=

∫ b

a
exp

(
h(x0) +

1

2
h′′(x0)(x− x0)

2

)
dx

(x0 is optimal, thus h′
(x0) = 0)

= exp(h(x0))

∫ b

a
exp

(
−
1

2

(x− x0)2

−h′′(x0)−1

)
(exp(h(x0)) is constant, the integral becomes a Gaussian).
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Laplace Approximations (cont.)

For a neural network, if we approximate the log posterior over the
parameters θ of a network given some dataset D around a MAP estimate
[5]

log p(θ | D) ≈ log p(θ∗ | D)− 1

2
(θ − θ∗)>Ĥ(θ − θ∗).

H̄ = E[H] is the average Hessian of the negative log posterior. If
exponentiated, the last term is a Gaussian functional form for θ. The
posterior over θ is then approximated as Gaussian

θ̂ ∼ N
(
θ∗, H̄−1

)
.
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Laplace Approximations (cont.)

The posterior mean when predicting on unseen dataset D∗ can then be
approximated by averaging the predictions of T Monte Carlo samples θ(t)

from the approximate posterior

p (D∗ | D) =

∫
p (D∗ | θ) p (θ | D) dθ ≈ 1

T

T∑
t=1

p
(
D∗ | θ(t)

)
.
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Thank You for Your Attention

Q & A
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