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Abstract

Paraphrase generation has been drawing in-
creasing attention from the research commu-
nity during the last few years. Capable para-
phrase generation models can greatly benefit
various downstream tasks, such as question an-
swering, and information retrieval. Many neu-
ral networks based on seq2seq have achieved
decent performances on several commonly
used datasets. However, they ignored certain
limitations appearing in those datasets, which
can possibly degraded performances or even
altered the objective of generating paraphrases.
In this paper, we carefully study the draw-
back underneath one dataset, propose a simple
and effective way to reorganize it, and show
this can improve performance by a large mar-
gin with Transformer-based conditional varia-
tional antoencoder.

1 Introduction

Paraphrases refer to the restatements of original
texts in a different form, often with modified words,
phrases and orders. It can be very useful in many
closely related tasks within natural language gen-
eration, such as abstract summarization (Chen and
Bansal, 2018) and chat-bot (Yan et al., 2016), as
well as in other non-generative tasks like question
answering (Fader et al., 2014) and relation extrac-
tion. Those works show that paraphrase is not only
important as a specific task, but also proves to help
improve performances in other downstream tasks.

Existent approaches to generating paraphrases
could be categorized as follows: rule-based ones
(Zhao et al., 2009; Hassan et al., 2007), variational
autoencoder ones (Gupta et al., 2017), and rein-
forcement learning ones (Yang et al., 2019; Qian
et al., 2019). The latter two kinds of models of-
ten include encoder/decoder architectures, which is
usually implemented with sequential models, such
as LSTM (Hochreiter and Schmidhuber, 1997) in

(Yang et al., 2019). Apart from those, other mod-
els also seek to use an architecture similar to that
of machine translation with Transformer (Vaswani
et al., 2017) like (Wang et al., 2019).

In this paper, we first analyze certain limitations
in a prevailing dataset, namely MSCOCO (Lin
et al., 2014) found via our observation that previous
state-of-the-art model (Gupta et al., 2017) trained
on these data actually learn more about language
model than paraphrase in some cases (it makes up
sentences based on training data instead of gener-
ating a paraphrase). Then we propose a practical
metric to measure paraphrase and regroup original
data accordingly, and propose a novel framework
for paraphrase generation based on conditional vari-
ational autoencoder (CVAE) that solely exploits the
Transformer model (Vaswani et al., 2017), namely
T-CVAE (Wang and Wan, 2019). Since the individ-
ual attention heads in Transformer imitates behav-
ior related to the syntactic and semantic structure
of the sentence (Vaswani et al., 2017, 2018) which
is critical to paraphrase generation.

Our main contributions include:

• We point out severe flaws in MSCOCO
dataset, and overcome it with simple and prac-
tical regrouping.

• We propose a novel and concise framework
for paraphrase generation that produces qual-
ity paraphrases of their source sentences com-
pared to previous state-of-the-art ones.

2 Dataset Analysis

A commonly used dataset in training paraphrase
generation, i.e., MSCOCO (Lin et al., 2014) was
originally derived from the image caption task
which aimed to provide a descriptive caption for
a given image. In the original dataset, an image
is often annotated with five captions (we will call



them a group of captions thereon). Previous works
usually assume that the semantic meanings of cap-
tions in a group are equivalent. Therefore, each
sentence taken from it is thought to be a paraphrase
of the others. However, we find that this assump-
tion is not necessarily true. Since different captions
in a group might describe the same image in dif-
ferent ways. Suppose we would like to caption an
image of a desk, one might say “a laptop sits on a
brown desk”, another might say “a pile of books
lies beneath a laptop”. They are both genuine cap-
tions, but they fails to conforms to the assumption
that they are semantically equivalent since either
contains information the other ignores. More such
examples are shown in Table 1.

To clearly demonstrate that the captions within
a group can be significantly discrepant in their
meanings, we apply two different methods of main-
stream sentence embedding to them, specifically,
BERT (Devlin et al., 2018) and InferSent (Con-
neau et al., 2017) and project the resulting vectors
to 2D space with Principle Components Analysis
(PCA). Without loss of generality, we use these
models without fine-tuning to avoid introducing
biases underneath this dataset. We randomly sam-
ple 6 groups of captions from MSCOCO and plot
their embeddings after compressed to 2D vectors
by BERT1 in Figure 1, and by InferSent2 in Fig-
ure 2, respectively.
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Figure 1: Embedding vectors obtained from InferSent.
Each color represents a group of captions.

Although compressing high dimensional vectors
to 2D might yield great losses in information, we

1https://github.com/dmlc/gluon-
nlp/tree/master/scripts/bert

2https://github.com/facebookresearch/InferSent
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Figure 2: Embedding vectors obtained from BERT.
Each color represents a group of captions.

can clearly observe that even captions in the same
group (shown in the same color) lie together, they
also tend to mix with other groups. This means
that some captions are more mutually semantically
equivalent than the others despite in the same group.
Therefore, assuming them to be paraphrases is not
necessarily true. A dataset which merely takes
captions uniformly from the same image actually
consists of considerable non-paraphrase compo-
nents that are irrelevant, or even harmful to this
task. To better capture how similar/disrep a group
of captions can be, we study a simple yet expres-
sive measure, cosine similarities between caption
pairs’ embedding vectors and plot their distribu-
tion. We use InferSent to plot three different kinds
of sentence pairs’ cosine similarity scores in Fig-
ure 3: random sentence pairs, caption pairs from
MSCOCO, and human-annotated paraphrase pairs
from Quora Question Pairs3.

We can see that while an caption pairs in a group
are more similar than random ones, they are still
significantly different compared to true paraphrase
pairs. Consequently, we will regroup MSCOCO
dataset below with a threshold of .8.

3 Regroup

Based on the discussion above, we will regroup
original groups of captions and compose a “more”
paraphrase dataset. There are 168930 and 5085
images in MSCOCO’s train and validation set4,
respectively. Since each image is usually accompa-

3https://www.quora.com/q/quoradata/First-Quora-
Dataset-Release-Question-Pairs

4COCO 2015 Image Captioning Task

 http://images.cocodataset.org/annotations/annotations_trainval2014.zip


Caption 1 Caption 2
a street sign modified to read stop bush a vandalized stop sign and a red beetle on the road

the two people are walking down the beach two teenagers at a white sanded beach with surfboards
a woman walks by a couple of shop windows two bicycles and a woman walking in front of a shop

Table 1: Some semantically different captions.
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Figure 3: Cosine similarity distribution from InferSent.

nied with 5 captions, denote the number of images
as N , we can construct around N ·

(5
2

)
paraphrase

pairs. However, a pair might not be semantically
equivalent as discussed above. Therefore, We tra-
verse all those possible pairs, while only keeping
those that have a cosine similarity exceeding .8,
which result in 648334 and 19251 pairs derived
from original train and validation set, respectively.
It could be the case that some sentences frequently
appear as the first while others as the second, so that
the model would only be able to learn paraphrase
in a fixed direction. However, during training time
we will address this by randomly peek either sen-
tence as the source to generate the other, i.e., target.
We will call the newly partitioned more paraphrase
version of MSCOCO as COCO-P.

4 Model

In this section, we present our model for generating
paraphrase, which is very similar to the T-CVAE
(Wang and Wan, 2019) model for story comple-
tion. The main difference is that in story comple-
tion task, they encode five sentences with one of
them masked and aim to predict the masked sen-
tence. While adopted to paraphrase generation task,
we encode a pair of sentences, the source and its
masked target, and try to generate the latter with
encoded information of source and a latent variable
z. The overall architecture is shown in Figure 4

5 Experiments

We will describe our implementation and compare
with recent state-of-the-art models in this section.

5.1 Baselines
We first compare our model’s performances on
MSCOCO dataset with recent models (Gupta et al.,
2017; Li et al., 2018; Huang et al., 2019; Yang
et al., 2019) and show the improvements brought
by Transformer as both encoder and decoder. Be-
sides, we will show on the more paraphrasing ver-
sion of MSCOCO, COCO-P, the performance can
be even better.

• VAE-SVG-EQ (Gupta et al., 2017): This
model is the former state-of-the-art in para-
phrase generation. It main components are
variational autoencoder which uses LSTM
(Hochreiter and Schmidhuber, 1997) for both
encoding and generating.

• GAP (Yang et al., 2019): This model uses a
generator-discriminator paradigm resembling
GAN (Goodfellow et al., 2014). It also adds
one more hidden representation for construct-
ing latent variable z.

5.2 Implementation
Since our model resembles the aforementioned
story completion one, our code is based on their
official implementation5. We use GloVe word

5https://github.com/sodawater/T-CVAE/
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Figure 4: Architecture of our T-CVAE model. Both prior net and the posterior net are built upon the encoder, and
the posterior net takes an extra input target represented by dashed box. During training, latent variable z fed to
the combination layer is calculated by the posterior (connected with dashed lines); during inference, the prior net
replaces the posterior net and generates the latent variable z′ (connected by solid lines). The reparametrization
trick is used to obtain samples of latent variable either from z in training or z′ in inferring.

MODEL BLEU↑ METEOR↑ ROUGE-L↑
VAE-SVG-EQ (Gupta et al., 2017) 41.7 31.0 -

GAP (Yang et al., 2019) 45.6 36.17 -
T-CVAE (ours) trained and evaluated on MSCOCO 42.7 - 37.2

T-CVAE (ours) trained on COCO-P, evaluated on MSCOCO 43.2 - 38.7
T-CVAE (ours) trained on MSCOCO, evaluated on COCO-P 45.6 - 43.1

T-CVAE (ours) trained and evaluated on COCO-P 48.3 - 45.8

Table 2: Performances of our model on MSCOCO/COCO-P against other models.

embedding (Pennington et al., 2014), specifically,
the Common Crawl 300d vectors with 840B to-
kens6. The vocabulary is built on the most frequent
20, 000 words from training data. We set the num-
ber of self-attention layers in Transformer to 2 with
a hidden size of 256. For the latent random vari-
able z, we set its dimension to 64. Besides, we
use a batch size of 128, a fixed learning rate of
1.0× 10−4, and clip gradient to [−3, 3]. A dropout
of .15 is also applied to each Transform layer for
regularization.

5.3 Evaluation
We present the results on original MSCOCO and
reconstructed COCO-P dataset in Table 2. It can
be seen that our proposed model along can im-
prove performances compared to previous state-

6http://nlp.stanford.edu/data/glove.840B.300d.zip

of-the-art (Gupta et al., 2017) with a large mar-
gin. Besides, training on the COCO-P dataset we
construct above will further improve performances
even tested on (not that paraphrased) MSCOCO.
Evaluation on COCO-P shows even better perfor-
mances, which proves the benefit brought by our
regrouped dataset.

6 Conclusions

We investigated critical shortcomings in a widely
used paraphrase dataset, MSCOCO and overcome
it with simple and practical regrouping. Besides,
We proposed a novel and concise framework that
improves on the current state-of-the-art with our
regrouped dataset.

In the future, we will use T-CVAE with varia-
tional attention (Bahuleyan et al., 2018) to investi-
gate its potential benefit for increasing diversity.



References
Hareesh Bahuleyan, Lili Mou, Olga Vechtomova, and

Pascal Poupart. 2018. Variational attention for
sequence-to-sequence models. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 1672–1682, Santa Fe, New Mex-
ico, USA. Association for Computational Linguis-
tics.

Yen-Chun Chen and Mohit Bansal. 2018. Fast abstrac-
tive summarization with reinforce-selected sentence
rewriting. Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers).

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni.
2014. Open question answering over curated and ex-
tracted knowledge bases. In Proceedings of the 20th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’14, pages
1156–1165, New York, NY, USA. ACM.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in neural information
processing systems, pages 2672–2680.

Ankush Gupta, Arvind Agarwal, Prawaan Singh, and
Piyush Rai. 2017. A deep generative framework for
paraphrase generation.

Samer Hassan, Andras Csomai, Carmen Banea, Ravi
Sinha, and Rada Mihalcea. 2007. UNT: SubFinder:
Combining knowledge sources for automatic lexical
substitution. In Proceedings of the Fourth Interna-
tional Workshop on Semantic Evaluations (SemEval-
2007), pages 410–413, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Shaohan Huang, Yu Wu, Furu Wei, and Zhongzhi Luan.
2019. Dictionary-guided editing networks for para-
phrase generation. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 33:6546–6553.

Zichao Li, Xin Jiang, Lifeng Shang, and Hang Li.
2018. Paraphrase generation with deep reinforce-
ment learning. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language

Processing, pages 3865–3878, Brussels, Belgium.
Association for Computational Linguistics.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C. Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. Lecture Notes in Com-
puter Science, page 740–755.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Lihua Qian, Lin Qiu, Weinan Zhang, Xin Jiang, and
Yong Yu. 2019. Exploring diverse expressions
for paraphrase generation. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3171–3180, Hong Kong,
China. Association for Computational Linguistics.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Fran-
cois Chollet, Aidan N. Gomez, Stephan Gouws,
Llion Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki
Parmar, Ryan Sepassi, Noam Shazeer, and Jakob
Uszkoreit. 2018. Tensor2tensor for neural machine
translation.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Su Wang, Rahul Gupta, Nancy Chang, and Jason
Baldridge. 2019. A task in a suit and a tie: Para-
phrase generation with semantic augmentation. Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, 33:7176–7183.

Tianming Wang and Xiaojun Wan. 2019. T-cvae:
Transformer-based conditioned variational autoen-
coder for story completion. In Proceedings of the
Twenty-Eighth International Joint Conference on Ar-
tificial Intelligence, IJCAI-19, pages 5233–5239. In-
ternational Joint Conferences on Artificial Intelli-
gence Organization.

Zhao Yan, Nan Duan, Junwei Bao, Peng Chen, Ming
Zhou, Zhoujun Li, and Jianshe Zhou. 2016. Doc-
Chat: An information retrieval approach for chatbot
engines using unstructured documents. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 516–525, Berlin, Germany. Association
for Computational Linguistics.

Qian Yang, Dinghan Shen, Yong Cheng, Wenlin Wang,
Guoyin Wang, Lawrence Carin, et al. 2019. An end-
to-end generative architecture for paraphrase gener-
ation. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing

https://www.aclweb.org/anthology/C18-1142
https://www.aclweb.org/anthology/C18-1142
https://doi.org/10.18653/v1/p18-1063
https://doi.org/10.18653/v1/p18-1063
https://doi.org/10.18653/v1/p18-1063
https://doi.org/10.18653/v1/d17-1070
https://doi.org/10.18653/v1/d17-1070
https://doi.org/10.18653/v1/d17-1070
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1145/2623330.2623677
https://doi.org/10.1145/2623330.2623677
http://arxiv.org/abs/1709.05074
http://arxiv.org/abs/1709.05074
https://www.aclweb.org/anthology/S07-1091
https://www.aclweb.org/anthology/S07-1091
https://www.aclweb.org/anthology/S07-1091
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1609/aaai.v33i01.33016546
https://doi.org/10.1609/aaai.v33i01.33016546
https://doi.org/10.18653/v1/D18-1421
https://doi.org/10.18653/v1/D18-1421
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/D19-1313
https://doi.org/10.18653/v1/D19-1313
http://arxiv.org/abs/1803.07416
http://arxiv.org/abs/1803.07416
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1609/aaai.v33i01.33017176
https://doi.org/10.1609/aaai.v33i01.33017176
https://doi.org/10.24963/ijcai.2019/727
https://doi.org/10.24963/ijcai.2019/727
https://doi.org/10.24963/ijcai.2019/727
https://doi.org/10.18653/v1/P16-1049
https://doi.org/10.18653/v1/P16-1049
https://doi.org/10.18653/v1/P16-1049


and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3123–3133.

Shiqi Zhao, Xiang Lan, Ting Liu, and Sheng Li. 2009.
Application-driven statistical paraphrase generation.
In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing
of the AFNLP, pages 834–842, Suntec, Singapore.
Association for Computational Linguistics.

https://www.aclweb.org/anthology/P09-1094

